P. Schimmel, An Editing Activity That Prevents Mistranslation and Connection to Disease, Journal of Biological Chemistry, vol.283, issue.43, pp.28777-28782, 2008.
DOI : 10.1074/jbc.X800007200

M. Ibba, A. W. Curnow, and D. Söll, Aminoacyl-tRNA synthesis: divergent routes to a common goal, Trends in Biochemical Sciences, vol.22, issue.2, pp.39-42, 1997.
DOI : 10.1016/S0968-0004(96)20033-7

M. Guo, X. L. Yang, and P. Schimmel, New functions of aminoacyl-tRNA synthetases beyond translation, Nature Reviews Molecular Cell Biology, vol.106, issue.9, pp.668-674, 2010.
DOI : 10.1038/nrm2956

M. Labouesse, G. Dujardin, and P. P. Slonimski, The yeast nuclear gene NAM2 is essential for mitochondrial DNA integrity and can cure a mitochondrial RNA-maturase deficiency, Cell, vol.41, issue.1, pp.133-143, 1985.
DOI : 10.1016/0092-8674(85)90068-6

R. A. Akins and A. M. Lambowitz, A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof, Cell, vol.50, issue.3, pp.331-345, 1987.
DOI : 10.1016/0092-8674(87)90488-0

F. Houman, S. B. Rho, J. Zhang, X. Shen, C. C. Wang et al., Martinis, A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria, Proc. Natl. Acad. Sci. U. S. A, pp.97-13743, 2000.

S. Francisci, A. Montanari, C. De-luca, and L. Frontali, Peptides from aminoacyl-tRNA synthetases can cure the defects due to mutations in mt tRNA genes, Mitochondrion, vol.11, issue.6, pp.919-923, 2011.
DOI : 10.1016/j.mito.2011.08.006

M. Campese, P. Leopizzi, S. Gallo, L. Francisci, R. W. Frontali et al., Amati, Isoleucyl?tRNA synthetase levels modulate the penetrance of a homoplasmic m. 4277TNC mitochondrial tRNA(Ile) mutation causing hypertrophic cardiomyopathy, Hum. Mol. Genet, vol.21, pp.85-100, 2012.

E. Perli, C. Giordano, A. Pisano, A. Montanari, A. F. Campese et al., The isolated carboxyterminal domain of human mitochondrial leucyl?tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells, EMBO Mol. Med, vol.6, pp.169-182, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01168181

H. T. Hornig-do, A. Montanari, A. Rozanska, H. A. Tuppen, A. A. Almalki et al., Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations, EMBO Molecular Medicine, vol.32, pp.183-193, 2014.
DOI : 10.1002/emmm.201303202

J. Rorbach, A. A. Yusoff, H. Tuppen, D. P. Abg-kamaludin, Z. M. Chrzanowska-lightowlers et al., Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation, Nucleic Acids Research, vol.36, issue.9, pp.3065-3074, 2008.
DOI : 10.1093/nar/gkn147

H. Park, E. Davidson, and M. P. King, Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNALeu(UUR) gene, RNA, vol.14, issue.11, pp.2407-2416, 2008.
DOI : 10.1261/rna.1208808

R. Li and M. X. Guan, Human Mitochondrial Leucyl-tRNA Synthetase Corrects Mitochondrial Dysfunctions Due to the tRNALeu(UUR) A3243G Mutation, Associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Symptoms and Diabetes, Molecular and Cellular Biology, vol.30, issue.9, pp.30-2147, 2010.
DOI : 10.1128/MCB.01614-09

D. Luca, Y. F. Zhou, A. Montanari, V. Morea, R. Oliva et al., Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors, pp.408-417, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408939

M. T. Boniecki, M. T. Vu, A. K. Betha, and S. A. Martinis, CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase, Proceedings of the National Academy of Sciences, vol.105, issue.49, pp.19223-19228, 2008.
DOI : 10.1073/pnas.0809336105

J. J. Mulero and T. D. Fox, Alteration of the Saccharomyces cerevisiae COX2 mRNA 5'-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111., Molecular Biology of the Cell, vol.4, issue.12, pp.1327-1335, 1993.
DOI : 10.1091/mbc.4.12.1327

M. Feuermann, S. Francisci, T. Rinaldi, C. De-luca, H. Rohou et al., The yeast counterparts of human ???MELAS??? mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu, EMBO reports, vol.27, issue.1, pp.53-58, 2003.
DOI : 10.1038/sj.embor.embor713

A. Montanari, C. De-luca, P. Di-micco, V. Morea, L. Frontali et al., Structural and functional role of bases 32 and 33 in the anticodon loop of yeast mitochondrial tRNAIle, RNA, vol.17, issue.11, pp.1983-1996, 2011.
DOI : 10.1261/rna.2878711

H. Rohou, S. Francisci, T. Rinaldi, L. Frontali, and M. , Reintroduction of a characterized Mit tRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases, Yeast, vol.17, issue.3, pp.219-227, 2001.
DOI : 10.1002/1097-0061(200102)18:3<219::AID-YEA651>3.0.CO;2-C

S. Francisci, C. Bohn, L. Frontali, and M. , Bolotin-Fukuhara, Ts mutations in mitochondrial tRNA genes: characterization and effects of two point mutations in the mitochondrial gene for tRNAPhe in Saccharomyces cerevisiae, Curr. Genet, pp.33-110, 1998.

E. Zennaro, S. Francisci, A. Ragnini, L. Frontali, and M. , A point mutation in a mitocbondrial tRNA gene abolishes its 3??? end processing, Nucleic Acids Research, vol.17, issue.14, pp.5751-5764, 1989.
DOI : 10.1093/nar/17.14.5751

A. Montanari, C. Besagni, C. De-luca, V. Morea, R. Oliva et al., Yeast as a model of human mitochondrial tRNA base substitutions: Investigation of the molecular basis of respiratory defects, RNA, vol.14, issue.2, pp.275-283, 2008.
DOI : 10.1261/rna.740108

URL : https://hal.archives-ouvertes.fr/hal-00196585

]. A. Montanari, Y. F. Zhou, M. Fazzi, D. Orsi, M. Bolotin-fukuhara et al., Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases, Gene, vol.527, issue.1, pp.1-9, 2013.
DOI : 10.1016/j.gene.2013.05.042

C. J. Herbert, M. Labouesse, G. Dujardin, and P. P. Slonimski, The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl?tRNA synthetases, and are involved in mRNA splicing, EMBO J, vol.7, pp.473-483, 1988.

G. Natsoulis, F. Hilger, and G. R. Fink, The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae, Cell, vol.46, issue.2, pp.235-243, 1986.
DOI : 10.1016/0092-8674(86)90740-3

T. Rinaldi, R. Lande, M. Bolotin-fukuhara, and L. Frontali, Additional copies of the mitochondrial Ef-Tu and aspartyl?tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNAAsp, Curr. Genet, pp.31-494, 1997.

J. Rinehart, B. Krett, M. A. Rubio, J. D. Alfonzo, and D. Söll, Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion, Genes & Development, vol.19, issue.5, pp.583-592, 2005.
DOI : 10.1101/gad.1269305

A. Montanari, C. De-luca, L. Frontali, and S. Francisci, Aminoacyl-tRNA synthetases are multivalent suppressors of defects due to human equivalent mutations in yeast mt tRNA genes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1803, issue.9, pp.1050-1057, 2010.
DOI : 10.1016/j.bbamcr.2010.05.003

A. Ke and J. A. Doudna, Crystallization of RNA and RNA?protein complexes, Methods, vol.34, issue.3, pp.408-414, 2004.
DOI : 10.1016/j.ymeth.2004.03.027

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

F. Jühling, M. Mörl, R. K. Hartmann, M. Sprinzl, P. F. Stadler et al., tRNAdb 2009: compilation of tRNA sequences and tRNA genes, Database issue, pp.159-162, 2009.
DOI : 10.1093/nar/gkn772

R. Giegé, M. Sissler, and C. Florentz, Universal rules and idiosyncratic features in tRNA identity, Nucleic Acids Research, vol.26, issue.22, pp.5017-5035, 1998.
DOI : 10.1093/nar/26.22.5017

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Research, vol.16, issue.22, pp.10881-10890, 1988.
DOI : 10.1093/nar/16.22.10881

M. Sprinzl and K. S. Vassilenko, Compilation of tRNA sequences and sequences of tRNA genes, Nucleic Acids Research, vol.33, issue.Database issue, pp.139-140, 2005.
DOI : 10.1093/nar/gki012

URL : https://hal.archives-ouvertes.fr/hal-00356160

C. De-luca, C. Besagni, L. Frontali, M. Bolotin-fukuhara, and S. Francisci, Mutations in yeast mt tRNAs: Specific and general suppression by nuclear encoded tRNA interactors, Gene, vol.377, pp.169-176, 2006.
DOI : 10.1016/j.gene.2006.04.003

S. Francisci, C. De-luca, R. Oliva, V. Morea, A. Tramontano et al., Aminoacylation and conformational properties of yeast mitochondrial tRNA mutants with respiratory deficiency, RNA, vol.11, issue.6, pp.914-927, 2005.
DOI : 10.1261/rna.2260305

W. Zagorski, B. Castaing, C. J. Herbert, M. Labouesse, R. Martin et al., Purification and characterization of the Saccharomyces cerevisiae mitochondrial leucyltRNA synthetase, J. Biol. Chem, pp.266-2537, 1991.

J. M. Bullard, Y. C. Cai, and L. L. Spremulli, Expression and characterization of the human mitochondrial leucyl-tRNA synthetase, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1490, issue.3, pp.245-258, 2000.
DOI : 10.1016/S0167-4781(99)00240-7

L. Hsu, S. B. Rho, K. M. Vannella, and S. A. , Martinis, Functional divergence of a unique Cterminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles, J. Biol. Chem, pp.281-23075, 2006.

J. Sarkar, K. Poruri, M. T. Boniecki, K. K. Mctavish, and S. A. Martinis, Yeast Mitochondrial Leucyl-tRNA Synthetase CP1 Domain Has Functionally Diverged to Accommodate RNA Splicing at Expense of Hydrolytic Editing, Journal of Biological Chemistry, vol.287, issue.18, pp.287-14772, 2012.
DOI : 10.1074/jbc.M111.322412