S. Agrawal, L. Lau, and V. Yong, MMPs in the central nervous system: Where the good guys go bad, Seminars in Cell & Developmental Biology, vol.19, issue.1, pp.42-51, 2008.
DOI : 10.1016/j.semcdb.2007.06.003

V. Annese, C. Barcia, R. -. Bernal, F. Gómez, A. Ros et al., Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1, MPTP)-induced Parkinsonism, pp.6-132, 2013.

C. Barcia, V. Bautista, A. Sánchez-bahillo, E. Fernández-villalba, J. Navarro-ruis et al., Circadian Determinations of Cortisol, Prolactin and Melatonin in Chronic Methyl-Phenyl-Tetrahydropyridine-Treated Monkeys, Neuroendocrinology, vol.78, issue.2, pp.118-128, 2003.
DOI : 10.1159/000071967

C. Barcia, A. Sánchez-bahillo, E. Fernández-villalba, V. Bautista, Y. Poza et al., Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure, Glia, vol.373, issue.4, pp.402-409, 2004.
DOI : 10.1002/glia.20015

C. Barcia, V. De-pablos, V. Bautista-hernández, A. Sánchez-bahillo, I. Bernal et al., Increased plasma levels of TNF-?? but not of IL1-?? in MPTP-treated monkeys one year after the MPTP administration, Parkinsonism & Related Disorders, vol.11, issue.7, pp.435-439, 2005.
DOI : 10.1016/j.parkreldis.2005.05.006

C. Barcia, N. Sanderson, R. Barrett, K. Wawrowsky, K. Kroeger et al., T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury, PLoS ONE, vol.131, issue.8, p.2977, 2008.
DOI : 10.1371/journal.pone.0002977.g011

C. Barcia, C. Ros, V. Annese, A. Gómez, R. -. Bernal et al., IFN-?? signaling, with the synergistic contribution of TNF-??, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease, Cell Death and Disease, vol.203, issue.4, p.142, 2011.
DOI : 10.1038/cddis.2011.17

C. Barnum and M. Tansey, Modeling neuroinflammatory pathogenesis of Parkinson???s disease, Prog Brain Res, vol.184, pp.113-132, 2010.
DOI : 10.1016/S0079-6123(10)84006-3

E. Bezard, S. Dovero, C. Imbert, T. Boraud, and C. Gross, Spontaneous long-term compensatory dopaminergic sprouting in MPTP-treated mice, Synapse, vol.13, issue.3, pp.363-368, 2000.
DOI : 10.1002/1098-2396(20001201)38:3<363::AID-SYN16>3.0.CO;2-A

H. Braak, U. Rüb, W. Gai, D. Tredici, and K. , Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, Journal of Neural Transmission, vol.110, issue.5, pp.517-536, 2003.
DOI : 10.1007/s00702-002-0808-2

H. Braak, D. Tredici, K. Rüb, U. De-vos, R. et al., Staging of brain pathology related to sporadic Parkinson???s disease, Neurobiology of Aging, vol.24, issue.2, pp.197-211, 2006.
DOI : 10.1016/S0197-4580(02)00065-9

H. Braak, M. Sastre, D. Tredici, and K. , Development of ??-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson???s disease, Acta Neuropathologica, vol.99, issue.Suppl 112, pp.231-241, 2007.
DOI : 10.1007/s00401-007-0244-3

V. Brochard, B. Combadière, A. Prigent, Y. Laouar, A. Perrin et al., Infiltration of CD 4? lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease, J Clin Invest, vol.119, pp.182-192, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00393947

E. Candelario-jalil, Y. Yang, and G. Rosenberg, Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia, Neuroscience, vol.158, issue.3, pp.983-994, 2009.
DOI : 10.1016/j.neuroscience.2008.06.025

D. Choi, E. Kim, H. Son, T. Joh, D. Kim et al., A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells, Journal of Neurochemistry, vol.13, issue.1, pp.405-415, 2008.
DOI : 10.1016/S0166-2236(97)01169-7

D. Stefano, M. Annese, V. Barcia, C. , R. Bernal et al., Neuroinflammation in Parkinson's disease: a role for matrix metalloproteinases? In: Gemma C (ed) Neuroinflammation: pathogenesis, mechanisms and management, 2012.

D. Signore, A. , D. Sanctis, V. , D. Mauro et al., Gene expression pathways induced by axotomy and decentralization of rat superior cervical ganglion neurons, European Journal of Neuroscience, vol.105, issue.1, pp.65-74, 2006.
DOI : 10.1111/j.1460-9568.2005.04520.x

M. Gerard, Z. Debyser, L. Desender, P. Kahle, J. Baert et al., The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy, The FASEB Journal, vol.20, pp.524-526, 2006.
DOI : 10.1096/fj.05-5126fje

T. Goldschmidt, J. Antel, F. König, W. Brück, and T. Kuhlmann, Remyelination capacity of the MS brain decreases with disease chronicity, Neurology, vol.72, issue.22, pp.1914-1921, 2009.
DOI : 10.1212/WNL.0b013e3181a8260a

M. Herkenham, M. Little, K. Bankiewicz, S. Yang, S. Markey et al., Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: An in vivo autoradiographic study, Neuroscience, vol.40, issue.1, pp.133-158, 1991.
DOI : 10.1016/0306-4522(91)90180-V

M. Herrero, E. Hirsch, F. Javoy-agid, J. Obeso, and Y. Agid, Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum, Brain Research, vol.624, issue.1-2, pp.281-285, 1993.
DOI : 10.1016/0006-8993(93)90088-5

E. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, The Lancet Neurology, vol.8, issue.4, pp.382-397, 2009.
DOI : 10.1016/S1474-4422(09)70062-6

E. Hirsh, S. Hunot, P. Damier, and B. Faucheux, Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?, Annals of Neurology, vol.44, issue.S1, pp.115-120, 1998.
DOI : 10.1002/ana.410440717

H. Houlden and A. Singleton, The genetics and neuropathology of Parkinson???s disease, Acta Neuropathologica, vol.44, issue.1923, pp.325-338, 2012.
DOI : 10.1007/s00401-012-1013-5

S. Hunot, F. Boissiere, B. Faucheux, B. Brugg, A. Mouatt-prigent et al., Nitric oxide synthase and neuronal vulnerability in parkinson's disease, Neuroscience, vol.72, issue.2, pp.355-363, 1996.
DOI : 10.1016/0306-4522(95)00578-1

G. Huntley, Synaptic circuit remodelling by matrix metalloproteinases in health and disease, Nature Reviews Neuroscience, vol.52, issue.11, pp.743-757, 2012.
DOI : 10.1038/nrn3320

V. Jackson-lewis, M. Jakowec, R. Burke, and S. Przedborski, Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neurodegeneration, vol.4, issue.3, pp.6-257, 1995.
DOI : 10.1016/1055-8330(95)90015-2

T. Kauppinen and R. Swanson, Poly(ADP-Ribose) Polymerase-1 Promotes Microglial Activation, Proliferation, and Matrix Metalloproteinase-9-Mediated Neuron Death, The Journal of Immunology, vol.174, issue.4, pp.2288-2296, 2005.
DOI : 10.4049/jimmunol.174.4.2288

Y. Kawasaki, Z. Xu, X. Wang, J. Park, Z. Zhuang et al., Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain, Nature Medicine, vol.6, issue.3, pp.331-336, 2008.
DOI : 10.1038/nm1723

G. Kim, H. Kim, K. Cho, H. Kim, Y. Cho et al., The role of MMP-9 in integrin-mediated hippocampal cell death after pilocarpine-induced status epilepticus, Neurobiology of Disease, vol.36, issue.1, pp.169-180, 2009.
DOI : 10.1016/j.nbd.2009.07.008

E. Kim, E. Shin, J. Choi, H. Son, I. Park et al., Matrix Metalloproteinase-3 Is Increased and Participates in Neuronal Apoptotic Signaling Downstream of Caspase-12 during Endoplasmic Reticulum Stress, Journal of Biological Chemistry, vol.285, issue.22, pp.16444-16452, 2010.
DOI : 10.1074/jbc.M109.093799

S. Kim, S. Kang, D. Kim, D. Yun, J. Chung et al., Matrix Metalloproteinase-3 Gene Polymorphisms Are Associated with Ischemic Stroke, Journal of Interferon & Cytokine Research, vol.32, issue.2, pp.81-86, 2011.
DOI : 10.1089/jir.2011.0022

J. Langston, P. Ballard, J. Tetrud, and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science, vol.219, issue.4587, pp.979-980, 1983.
DOI : 10.1126/science.6823561

P. Larsen, J. Wells, W. Stallcup, G. Opdenakker, and V. Yong, Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan, J Neurosci, vol.23, pp.11127-11135, 2003.

P. Larsen, A. Dasilva, K. Conant, and V. Yong, Myelin Formation during Development of the CNS Is Delayed in Matrix Metalloproteinase-9 and -12 Null Mice, Journal of Neuroscience, vol.26, issue.8, pp.2207-2214, 2006.
DOI : 10.1523/JNEUROSCI.1880-05.2006

C. Leonardo and K. Pennypacker, Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury, Journal of Neuroinflammation, vol.6, issue.1, p.13, 2009.
DOI : 10.1186/1742-2094-6-13

F. Episcopo, C. Tirolo, S. Caniglia, N. Testa, P. Serra et al., Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease, Journal of Neuroinflammation, vol.7, issue.1, p.83, 2010.
DOI : 10.1186/1742-2094-7-83

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

S. Lorenzl, D. Albers, S. Narr, J. Chirichigno, and M. Beal, Expression of MMP-2, MMP-9, and MMP-1 and Their Endogenous Counterregulators TIMP-1 and TIMP-2 in Postmortem Brain Tissue of Parkinson's Disease, Experimental Neurology, vol.178, issue.1, pp.13-20, 2002.
DOI : 10.1006/exnr.2002.8019

S. Lorenzl, N. Calingasan, L. Yang, D. Albers, S. Shugama et al., Matrix Metalloproteinase-9 Is Elevated in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism in Mice, NeuroMolecular Medicine, vol.5, issue.2, pp.119-132, 2004.
DOI : 10.1385/NMM:5:2:119

P. Mcgeer, S. Itagaki, B. Boyes, and E. Mcgeer, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains, Neurology, vol.38, issue.8, pp.1285-1291, 1988.
DOI : 10.1212/WNL.38.8.1285

S. Mounayar, S. Boulet, D. Tandé, C. Jan, M. Pessiglione et al., A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery, Brain, vol.130, issue.11, pp.2898-2914, 2007.
DOI : 10.1093/brain/awm208

URL : https://hal.archives-ouvertes.fr/inserm-00391588

T. Nagatsu, M. Mogi, H. Ichinose, and A. Togari, Changes in cytokines and neurotrophins in Parkinson???s disease, Neural Transm, vol.60, pp.277-290, 2000.
DOI : 10.1007/978-3-7091-6301-6_19

L. Oh, P. Larsen, C. Krekoski, D. Edwards, F. Donovan et al., Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes, J Neurosci, vol.19, pp.8464-8475, 1999.

Y. Ouchi, E. Yoshikawa, Y. Sekine, M. Futatsubashi, T. Kanno et al., Microglial activation and dopamine terminal loss in early Parkinson's disease, Annals of Neurology, vol.291, issue.2, pp.168-175, 2005.
DOI : 10.1002/ana.20338

Y. Ouchi, S. Yagi, M. Yokokura, and M. Sakamoto, Neuroinflammation in the living brain of Parkinson's disease, Parkinsonism & Related Disorders, vol.15, pp.200-204, 2009.
DOI : 10.1016/S1353-8020(09)70814-4

A. Page-mccaw, A. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nature Reviews Molecular Cell Biology, vol.79, issue.3, pp.221-233, 2007.
DOI : 10.1038/nrm2125

W. Parks, C. Wilson, and Y. Lopez-boado, Matrix metalloproteinases as modulators of inflammation and innate immunity, Nature Reviews Immunology, vol.158, issue.8, pp.617-629, 2004.
DOI : 10.1073/pnas.93.9.3942

P. Godoy, M. Tarelli, R. Ferrari, C. Sarchi, M. Pitossi et al., Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease, Brain, vol.131, issue.7, pp.1880-1894, 2008.
DOI : 10.1093/brain/awn101

A. Rolls, R. Shechter, and M. Schwartz, The bright side of the glial scar in CNS repair, Nature Reviews Neuroscience, vol.21, issue.3, pp.235-241, 2009.
DOI : 10.1016/j.neuron.2006.01.022

O. Sbai, A. Ould-yahoui, L. Ferhat, Y. Gueye, A. Bernard et al., Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes, Glia, vol.924, issue.1/2, pp.344-366, 2010.
DOI : 10.1002/glia.20927

W. Streit and G. Kreutzberg, Lectin binding by resting and reactive microglia, Journal of Neurocytology, vol.24, issue.2, pp.249-260, 1987.
DOI : 10.1007/BF01795308

W. Streit, S. Walter, and N. Pennell, Reactive microgliosis, Progress in Neurobiology, vol.57, issue.6, pp.563-581, 1999.
DOI : 10.1016/S0301-0082(98)00069-0

M. Tansey and M. Goldberg, Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention, Neurobiology of Disease, vol.37, issue.3, pp.510-518, 2010.
DOI : 10.1016/j.nbd.2009.11.004

J. Uhm, N. Dooley, L. Oh, and Y. Vw, Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix, Glia, vol.17, issue.1, pp.53-63, 1998.
DOI : 10.1002/(SICI)1098-1136(199801)22:1<53::AID-GLIA5>3.0.CO;2-9

E. Walker and G. Rosenberg, Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia, Journal of Neuroscience Research, vol.854, issue.12, pp.764-773, 2010.
DOI : 10.1002/jnr.22257

S. Walsh, D. Finn, and E. Dowd, Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat, Neuroscience, vol.175, pp.251-261, 2011.
DOI : 10.1016/j.neuroscience.2010.12.005

P. Whitton, Neuroinflammation and the prospects for antiinflammatory treatment of Parkinson's disease, Curr Opin Investig Drugs, vol.11, pp.788-794, 2010.

G. Wilczynski, F. Konopacki, E. Wilczek, Z. Lasiecka, A. Gorlewicz et al., Important role of matrix metalloproteinase 9 in epileptogenesis, The Journal of Cell Biology, vol.21, issue.5, pp.1021-1035, 2008.
DOI : 10.1038/nrn1807

M. Woo, J. Park, I. Choi, W. Kim, and H. Kim, Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia, Journal of Neurochemistry, vol.4, issue.2, pp.770-780, 2008.
DOI : 10.1111/j.1471-4159.2008.05430.x

J. Wright and J. Harding, Contributions of Matrix Metalloproteinases to Neural Plasticity, Habituation, Associative Learning and Drug Addiction, Neural Plasticity, vol.17, issue.21, p.579382, 2009.
DOI : 10.1016/S0006-8993(02)04036-2

V. Yong, Metalloproteinases: Mediators of Pathology and Regeneration in the CNS, Nature Reviews Neuroscience, vol.21, issue.12, pp.931-944, 2005.
DOI : 10.1038/nrn1807

H. Zhang, H. Adwanikar, Z. Werb, and L. Noble-haeusslein, Matrix Metalloproteinases and Neurotrauma: Evolving Roles in Injury and Reparative Processes, The Neuroscientist, vol.18, issue.2, pp.156-170, 2010.
DOI : 10.1177/1073858409355830