J. Vannimenus and G. Toulouse, Theory of the frustration effect. II. Ising spins on a square lattice, Journal of Physics C: Solid State Physics, vol.10, issue.18, p.537, 1977.
DOI : 10.1088/0022-3719/10/18/008

J. Bryngelson, J. Onuchic, N. Socci, and P. Wolynes, Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins: Structure, Function, and Genetics, vol.90, issue.3, pp.167-195, 1995.
DOI : 10.1002/prot.340210302

C. Anfinsen, E. Haber, M. Sela, F. White, and J. , THE KINETICS OF FORMATION OF NATIVE RIBONUCLEASE DURING OXIDATION OF THE REDUCED POLYPEPTIDE CHAIN, Proceedings of the National Academy of Sciences, vol.47, issue.9, pp.1309-1314, 1961.
DOI : 10.1073/pnas.47.9.1309

J. Onuchic, N. Socci, Z. Luthey-schulten, and P. Wolynes, Protein folding funnels: the nature of the transition state ensemble, Folding and Design, vol.1, issue.6, pp.441-450, 1996.
DOI : 10.1016/S1359-0278(96)00060-0

P. Wolynes, Energy landscapes and solved protein-folding problems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1827, pp.453-464, 1827.
DOI : 10.1098/rsta.2004.1502

L. Sutto, J. Lätzer, J. Hegler, D. Ferreiro, and P. Wolynes, Consequences of localized frustration for the folding mechanism of the IM7 protein, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.19825-19830, 2007.
DOI : 10.1073/pnas.0709922104

D. Ferreiro, J. Hegler, E. Komives, and P. Wolynes, Localizing frustration in native proteins and protein assemblies, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.19819-19824, 2007.
DOI : 10.1073/pnas.0709915104

S. Adinolfi, Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS, Nature Structural & Molecular Biology, vol.5, issue.4, pp.390-396, 2009.
DOI : 10.1038/nsmb.1579

S. Adinolfi, M. Trifuoggi, A. Politou, S. Martin, and A. Pastore, A structural approach to understanding the iron-binding properties of phylogenetically different frataxins, Human Molecular Genetics, vol.11, issue.16, pp.1865-1877, 2002.
DOI : 10.1093/hmg/11.16.1865

A. Bulteau, Frataxin Acts as an Iron Chaperone Protein to Modulate Mitochondrial Aconitase Activity, Science, vol.305, issue.5681, pp.242-245, 2004.
DOI : 10.1126/science.1098991

A. Pastore and H. Puccio, Frataxin, J Neurochem, vol.126, issue.1, pp.43-52, 2013.
DOI : 10.1201/b10278-10

URL : https://hal.archives-ouvertes.fr/pasteur-01181218

M. Pandolfo and A. Pastore, The pathogenesis of Friedreich ataxia and the structure and function of frataxin, Journal of Neurology, vol.277, issue.S1, pp.9-17, 2009.
DOI : 10.1007/s00415-009-1003-2

C. Pastore, M. Franzese, F. Sica, P. Temussi, and A. Pastore, Understanding the binding properties of an unusual metal-binding protein?????????a study of bacterial frataxin, FEBS Journal, vol.55, issue.16, pp.4199-4210, 2007.
DOI : 10.1111/j.1742-4658.2007.05946.x

D. Bonetti, The kinetics of folding of frataxin, Physical Chemistry Chemical Physics, vol.286, issue.14, pp.6391-6397, 2014.
DOI : 10.1039/c3cp54055c

URL : https://hal.archives-ouvertes.fr/pasteur-01181218

C. Zong, Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin, Proceedings of the National Academy of Sciences, vol.104, issue.9, pp.3159-3164, 2007.
DOI : 10.1073/pnas.0611149104

T. Ternström, U. Mayor, M. Akke, and M. Oliveberg, From snapshot to movie: phi analysis of protein folding transition states taken one step further, Proceedings of the National Academy of Sciences, vol.96, issue.26, pp.14854-14859, 1999.
DOI : 10.1073/pnas.96.26.14854

K. Scott, L. Randles, and C. J. , The Folding of Spectrin Domains II: Phi-value Analysis of R16, Journal of Molecular Biology, vol.344, issue.1, pp.207-221, 2004.
DOI : 10.1016/j.jmb.2004.09.023

S. Gianni, M. Brunori, P. Jemth, M. Oliveberg, and M. Zhang, Distinguishing between Smooth and Rough Free Energy Barriers in Protein Folding, Biochemistry, vol.48, issue.49, pp.11825-11830, 2009.
DOI : 10.1021/bi901585q

A. Fersht, A. Matouschek, and L. Serrano, The folding of an enzyme, Journal of Molecular Biology, vol.224, issue.3, pp.771-782, 1992.
DOI : 10.1016/0022-2836(92)90561-W

M. Vendruscolo, E. Paci, C. Dobson, and M. Karplus, Three key residues form a critical contact network in a protein folding transition state, Nature, vol.409, issue.6820, pp.641-645, 2001.
DOI : 10.1038/35054591

M. Jenik, Protein frustratometer: a tool to localize energetic frustration in protein molecules, Nucleic Acids Research, vol.40, issue.W1, pp.348-51, 2012.
DOI : 10.1093/nar/gks447

M. Oliveberg, Characterisation of the transition states for protein folding: towards a new level of mechanistic detail in protein engineering analysis, Current Opinion in Structural Biology, vol.11, issue.1, pp.94-100, 2001.
DOI : 10.1016/S0959-440X(00)00171-8

G. Hammond, A Correlation of Reaction Rates, Journal of the American Chemical Society, vol.77, issue.2, pp.334-339, 1955.
DOI : 10.1021/ja01607a027

X. Salvatella, C. Dobson, A. Fersht, and M. Vendruscolo, Determination of the folding transition states of barnase by using ??I-value-restrained simulations validated by double mutant ??IJ-values, Proceedings of the National Academy of Sciences, vol.102, issue.35, pp.12389-12394, 2005.
DOI : 10.1073/pnas.0408226102

N. Calosci, Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins, Proceedings of the National Academy of Sciences, vol.105, issue.49, pp.19241-19246, 2008.
DOI : 10.1073/pnas.0804774105

C. Friel, D. Smith, M. Vendruscolo, J. Gsponer, and S. Radford, The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints, Nature Structural & Molecular Biology, vol.4, issue.3, pp.318-324, 2009.
DOI : 10.1038/nsmb.1562

S. Gianni, A PDZ domain recapitulates a unifying mechanism for protein folding, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.128-133, 2007.
DOI : 10.1073/pnas.0602770104

S. Gianni, Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain, Nature Structural & Molecular Biology, vol.30, issue.12, pp.1431-1437, 2010.
DOI : 10.1038/nsmb.1956

T. Karlberg, The Structures of Frataxin Oligomers Reveal the Mechanism for the Delivery and Detoxification of Iron, Structure, vol.14, issue.10, pp.1535-1546, 2006.
DOI : 10.1016/j.str.2006.08.010

A. Capaldi, C. Kleanthous, and S. Radford, Im7 folding mechanism: misfolding on a path to the native state, Nature Structural Biology, vol.9, issue.3, pp.209-216, 2002.
DOI : 10.1038/nsb757

S. Ozkan, I. Bahar, and K. Dill, Transition states and the meaning of Phi-values in protein folding kinetics, Nature Structural Biology, vol.8, issue.9, pp.765-769, 2001.
DOI : 10.1038/nsb0901-765

A. Fersht and S. Sato, ??-Value analysis and the nature of protein-folding transition states, Proceedings of the National Academy of Sciences, vol.101, issue.21, pp.7976-7981, 2004.
DOI : 10.1073/pnas.0402684101

A. Naganathan and V. Muñoz, Insights into protein folding mechanisms from large scale analysis of mutational effects, Proceedings of the National Academy of Sciences, vol.107, issue.19, pp.8611-8616, 2010.
DOI : 10.1073/pnas.1000988107

E. Paci, C. J. Steward, A. Vendruscolo, M. Karplus, and M. , Self-consistent determination of the transition state for protein folding: Application to a fibronectin type III domain, Proceedings of the National Academy of Sciences, vol.100, issue.2, pp.394-399, 2003.
DOI : 10.1073/pnas.232704999

D. Ferreiro, J. Hegler, E. Komives, and P. Wolynes, On the role of frustration in the energy landscapes of allosteric proteins, Proceedings of the National Academy of Sciences, vol.108, issue.9, pp.3499-3503, 2011.
DOI : 10.1073/pnas.1018980108

G. Tartaglia and M. Vendruscolo, The Zyggregator method for predicting protein aggregation propensities, Chemical Society Reviews, vol.8, issue.7, pp.1395-1401, 2008.
DOI : 10.1039/b706784b

G. Tartaglia and M. Vendruscolo, Proteome-Level Interplay between Folding and Aggregation Propensities of Proteins, Journal of Molecular Biology, vol.402, issue.5, pp.919-928, 2010.
DOI : 10.1016/j.jmb.2010.08.013

A. Nordlund, Functional features cause misfolding of the ALS-provoking enzyme SOD1, Proceedings of the National Academy of Sciences, vol.106, issue.24, pp.9667-9672, 2009.
DOI : 10.1073/pnas.0812046106

M. Silow and M. Oliveberg, Transient aggregates in protein folding are easily mistaken for folding intermediates, Proceedings of the National Academy of Sciences, vol.94, issue.12, pp.6084-6086, 1997.
DOI : 10.1073/pnas.94.12.6084

R. Best and J. Mittal, Protein Simulations with an Optimized Water Model: Cooperative Helix Formation and Temperature-Induced Unfolded State Collapse, The Journal of Physical Chemistry B, vol.114, issue.46, pp.14916-14923, 2010.
DOI : 10.1021/jp108618d

M. Bonomi, PLUMED: A portable plugin for free-energy calculations with molecular dynamics, Computer Physics Communications, vol.180, issue.10, pp.1961-1972, 2009.
DOI : 10.1016/j.cpc.2009.05.011