D. E. Koshland, Application of a Theory of Enzyme Specificity to Protein Synthesis, Proceedings of the National Academy of Sciences, vol.44, issue.2, pp.98-104, 1958.
DOI : 10.1073/pnas.44.2.98

J. Monod, J. Wyman, and J. P. Changeux, On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, issue.1, pp.88-118, 1965.
DOI : 10.1016/S0022-2836(65)80285-6

D. E. Jr, G. Némethy, and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry, vol.5, pp.365-385, 1966.

O. F. Lange, N. Lakomek, C. Farès, G. F. Schröder, K. F. Walter et al., Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution, Science, vol.320, issue.5882, pp.1471-1475, 2008.
DOI : 10.1126/science.1157092

J. Gsponer, J. Christodoulou, A. Cavalli, J. M. Bui, B. Richter et al., A Coupled Equilibrium Shift Mechanism in Calmodulin-Mediated Signal Transduction, Structure, vol.16, issue.5, pp.736-746, 1993.
DOI : 10.1016/j.str.2008.02.017

J. Changeux and S. Edelstein, Conformational selection or induced fit? 50 years of debate resolved, F1000, Biol. Rep, vol.3, issue.19, pp.3-19, 2011.

K. Gunasekaran, B. Ma, and R. Nussinov, Is allostery an intrinsic property of all dynamic proteins?, Proteins: Structure, Function, and Bioinformatics, vol.3, issue.Suppl 4, pp.433-443, 2004.
DOI : 10.1002/prot.20232

N. Popovych, S. Sun, R. H. Ebright, and C. G. Kalodimos, Dynamically driven protein allostery, Nature Structural & Molecular Biology, vol.28, issue.9, pp.831-838, 2006.
DOI : 10.1021/bi9526802

Q. Cui, M. Karplus, A. Cooperativity-revisited, and P. Sci, Allostery and cooperativity revisited, Protein Science, vol.326, issue.8, pp.1295-1307, 2008.
DOI : 10.1110/ps.03259908

V. N. Uversky and A. K. Dunker, Multiparametric Analysis of Intrinsically Disordered Proteins: Looking at Intrinsic Disorder through Compound Eyes, Analytical Chemistry, vol.84, issue.5, pp.2096-2104, 2012.
DOI : 10.1021/ac203096k

H. Zhou, Intrinsic disorder: signaling via highly specific but short-lived association, Trends in Biochemical Sciences, vol.37, issue.2, pp.43-48, 2012.
DOI : 10.1016/j.tibs.2011.11.002

J. Dogan, S. Gianni, and P. Jemth, The binding mechanisms of intrinsically disordered proteins, Phys. Chem. Chem. Phys., vol.323, issue.Suppl 1, pp.6323-6331, 2014.
DOI : 10.1039/C3CP54226B

A. D. Vogt and E. D. Cera, Conformational Selection or Induced Fit? A Critical Appraisal of the Kinetic Mechanism, Biochemistry, vol.51, issue.30, pp.5894-5902, 2012.
DOI : 10.1021/bi3006913

A. D. Vogt and E. D. Cera, Conformational Selection Is a Dominant Mechanism of Ligand Binding, Biochemistry, vol.52, issue.34, pp.5723-5729, 2013.
DOI : 10.1021/bi400929b

A. D. Vogt, N. Pozzi, Z. Chen, and E. D. Cera, Essential role of conformational selection in ligand binding, Biophysical Chemistry, vol.186, pp.186-199, 2014.
DOI : 10.1016/j.bpc.2013.09.003

K. Kirschner, M. Eigen, R. Bittman, and B. Voigt, THE BINDING OF NICOTINAMIDE-ADENINE DINUCLEOTIDE TO YEAST D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE: TEMPERATURE-JUMP RELAXATION STUDIES ON THE MECHANISM OF AN ALLOSTERIC ENZYME, Proceedings of the National Academy of Sciences, vol.56, issue.6, pp.56-1661, 1966.
DOI : 10.1073/pnas.56.6.1661

S. S. Patel, I. Wong, and K. A. Johnson, Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant, Biochemistry, vol.30, issue.2, pp.511-525, 1991.
DOI : 10.1021/bi00216a029

I. Wong, S. S. Patel, and K. A. Johnson, An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics, Biochemistry, vol.30, issue.2, pp.526-537, 1991.
DOI : 10.1021/bi00216a030

K. A. Johnson, Role of Induced Fit in Enzyme Specificity: A Molecular Forward/Reverse Switch, Journal of Biological Chemistry, vol.283, issue.39, pp.26297-26301, 2008.
DOI : 10.1074/jbc.R800034200

S. E. Halford, alkaline phosphatase. An analysis of transient kinetics, Biochemical Journal, vol.125, issue.1, pp.319-327, 1971.
DOI : 10.1042/bj1250319

S. T. Olson, K. R. Srinivasan, I. Björk, and J. D. Shore, Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction, J. Biol. Chem, pp.256-11073, 1981.

R. Galletto, M. J. Jezewska, and W. Bujalowski, Kinetics of Allosteric Conformational Transition of a Macromolecule Prior to Ligand Binding: Analysis of Stopped-Flow Kinetic Experiments, Cell Biochemistry and Biophysics, vol.42, issue.2, pp.121-144, 2005.
DOI : 10.1385/CBB:42:2:121

S. Gianni, T. Walma, A. Arcovito, N. Calosci, A. Bellelli et al., Demonstration of Long-Range Interactions in a PDZ Domain by NMR, Kinetics, and Protein Engineering, Structure, vol.14, issue.12, pp.1801-1809, 1993.
DOI : 10.1016/j.str.2006.10.010

C. N. Chi, A. Bach, Å. Engström, H. Wang, K. Strømgaard et al., A Sequential Binding Mechanism in a PDZ Domain, Biochemistry, vol.48, issue.30, pp.7089-7097, 2009.
DOI : 10.1021/bi900559k

F. Malatesta, The study of bimolecular reactions under non-pseudo-first order conditions, Biophysical Chemistry, vol.116, issue.3, pp.251-256, 2005.
DOI : 10.1016/j.bpc.2005.04.006

G. Schreiber, G. Haran, and H. Zhou, Fundamental Aspects of Protein???Protein Association Kinetics, Chemical Reviews, vol.109, issue.3, pp.839-860, 2009.
DOI : 10.1021/cr800373w

S. E. Halford, alkaline phosphatase. Relaxation spectra of ligand binding, Biochemical Journal, vol.126, issue.3, pp.727-738, 1972.
DOI : 10.1042/bj1260727

C. A. Fierke and G. G. Hammes, [1] Transient kinetic approaches to enzyme mechanisms, Methods Enzymol, vol.249, pp.3-37, 1995.
DOI : 10.1016/0076-6879(95)49029-9

S. T. Olson, B. Richard, G. Izaguirre, S. Schedin-weiss, and P. G. Gettins, Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases

S. Gianni, Distinguishing induced fit from conformational selection, Biophysical Chemistry, vol.189, pp.33-39, 2014.
DOI : 10.1016/j.bpc.2014.03.003

URL : https://hal.archives-ouvertes.fr/pasteur-01181245

Y. Ivarsson, C. Travaglini-allocatelli, P. Jemth, F. Malatesta, M. Brunori et al., An On-pathway Intermediate in the Folding of a PDZ Domain, Journal of Biological Chemistry, vol.282, issue.12, pp.8568-8572, 2007.
DOI : 10.1074/jbc.M611026200

F. Ye and M. Zhang, Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures, Biochemical Journal, vol.22, issue.1, pp.1-14, 2013.
DOI : 10.1038/sj.emboj.7601651

Y. Ivarsson and . Lett, Plasticity of PDZ domains in ligand recognition and signaling, FEBS Letters, vol.109, issue.17, pp.2638-2647, 2012.
DOI : 10.1016/j.febslet.2012.04.015

S. Gianni, A. Engström, M. Larsson, N. Calosci, F. Malatesta et al., The Kinetics of PDZ Domain-Ligand Interactions and Implications for the Binding Mechanism, Journal of Biological Chemistry, vol.280, issue.41, pp.34805-34812, 2005.
DOI : 10.1074/jbc.M506017200

F. C. Peterson, R. R. Penkert, B. F. Volkman, and K. E. Prehoda, Cdc42 Regulates the Par-6 PDZ Domain through an Allosteric CRIB-PDZ Transition, Molecular Cell, vol.13, issue.5, pp.665-676, 2004.
DOI : 10.1016/S1097-2765(04)00086-3

J. Dogan, T. Schmidt, X. Mu, Å. Engström, and P. Jemth, Fast Association and Slow Transitions in the Interaction between Two Intrinsically Disordered Protein Domains, Journal of Biological Chemistry, vol.287, issue.41, pp.34316-34324, 2012.
DOI : 10.1074/jbc.M112.399436

M. C. Shastry, S. D. Luck, and H. Roder, A Continuous-Flow Capillary Mixing Method to Monitor Reactions on the Microsecond Time Scale, Biophysical Journal, vol.74, issue.5, pp.2714-2721, 1998.
DOI : 10.1016/S0006-3495(98)77977-9

A. Fersht, Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding, 1999.

S. J. Demarest, M. Martinez-yamout, J. Chung, H. Chen, W. Xu et al., Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators, Nature, vol.415, issue.6871, pp.549-553, 2002.
DOI : 10.1038/415549a

W. L. Delano, The PyMol Molecular Graphics System, 2002.