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Abstract

The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and
represents a prototype of multi-drug resistant ‘‘superbug’’ for which effective therapeutic options are very limited. The
identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence
could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we
investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative
bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of
specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in
laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity,
resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model
of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the
potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.
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Introduction

Nowadays, microbial resistance to antibiotics is a major

hindrance to the successful treatment of many bacterial infections.

Since resistance to a given antibiotic inevitably builds up over

time, the development of new antibacterial drugs with novel

mechanisms of action represents an important strategy against

antibiotic resistance. Rational development of antibacterial drugs

with innovative activities involves the identification of new cellular

targets, that may emerge from a better understanding of cellular

pathways critical for pathogen survival and/or pathogenicity.

TolB is the periplasmic component of the Tol-Pal system, a

multi-protein complex present in almost all Gram-negative

bacteria which connects the cytoplasmic (or inner) membrane

with the outer membrane [1]. The Tol-Pal system was discovered

as the protein machinery responsible for the internalization of the

group A colicins and filamentous phage DNA in the model

bacterium Escherichia coli [2], [3]. However, further studies have

demonstrated that this system also plays a relevant role in the

maintenance of cell envelope integrity and in the cell division

process in almost all Gram-negative bacteria investigated to date

[1], [4–9].

With the exception of Erwinia chrysanthemi and Caulobacter
crescentus [10], [11], the Tol-Pal system does not appear to be

essential for bacterial growth in vitro, as demonstrated in several

Enterobacteriaceae, Pseudomonas putida and Vibrio cholerae,

although Tol-Pal defective mutants generally showed increased

sensitivity to toxic compounds (e.g. antibiotics) and reduced ability

to cause infection [7], [8], [12–14]. Proteomic analysis showed

that TolB is one of the most abundant proteins in the periplasm of

the human pathogen Pseudomonas aeruginosa [15]. Notably,

several attempts to generate tolB mutants in this bacterium, by

either site-directed [16] or large-scale random transposon muta-

genesis [17–19] failed, suggesting that tolB could indeed be

essential in P. aeruginosa.

In this study, we used a conditional mutagenesis approach

coupled with the analysis of specific pathogenicity-related pheno-

types to verify the essentiality of the tolB gene in P. aeruginosa,

and to evaluate TolB as a potential target for the development of

novel anti-P. aeruginosa drugs.

Materials and Methods

Ethics statement
Human serum was obtained from five healthy volunteers who

gave their written informed consent to the study. The research

project was approved by the review board of the Pasteur Institute-

Cenci Bolognetti Foundation, Sapienza University of Rome

(Rome, Italy).
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Bacteria and growth conditions
Bacterial strains and plasmids used in this study are listed in

Table 1. Bacteria were grown in Mueller-Hinton (MH) broth or

M9 minimal medium with 20 mM succinate (SM9) [27],

containing or not arabinose at different concentrations. When

indicated, sucrose was added to the growth medium to increase

osmolarity.

Construction of tolB conditional mutants
Primers and restriction enzymes used for cloning are listed in

Table S1. Plasmid mini-CTX1-araCPBADtolB was generated by

cloning the tolB coding sequence into pBEM9 downstream to an

araC-PBAD regulatory region that was optimized for P. aeruginosa
by modification of the ribosome binding site [25], followed by

subcloning of the entire araCPBADtolB region into the integration-

proficient vector mini-CTX1 [26]. The mini-CTX1-araCPBAD-

tolB construct was integrated into the attB neutral site of the P.
aeruginosa chromosome, and the backbone plasmid removed as

described [28]. In-frame deletion of the endogenous tolB copy was

obtained using the sacB-based suicide vector pDM4 as previously

described [24]. All constructs were verified by DNA sequencing.

Detergent, serum and antibiotic sensitivity assays
Sensitivity to the lytic effect of SDS was assessed by determining

the turbidity (OD600) of bacterial cell suspensions in saline after 5-

min incubation at room temperature in the presence of increasing

SDS concentrations (0–5%). Serum sensitivity was determined by

incubating about 108 P. aeruginosa cells at 37uC in saline in the

presence of 50% human serum (pooled from five healthy

volunteers) or heat-inactivated human serum [29]. Ofloxacin

sensitivity was determined by incubating about 108 P. aeruginosa
colony-forming units (CFUs) at 37uC in saline in the presence or in

the absence of 0.5 mg/L ofloxacin, corresponding to the

minimum inhibitory concentration (MIC) for the PAO1 strain

[30] (data not shown). After 3 h, ten-fold serial dilutions of each

cell suspension were plated on MH agar with 0.2% arabinose to

determine the percentage of survival with respect to the

corresponding controls. Sensitivity to polymyxin B and colistin

was assessed by a modification of a previously-described assay

[31]. Briefly, about 106 P. aeruginosa CFUs were incubated at

37uC in saline containing 4, 1 or 0.25 mg/L colistin or 2, 0.5 or

0.125 mg/L polymyxin B, corresponding to 46, 16 or 0.256
MICs for the PAO1 wild-type strain, respectively (data not shown).

After 1 h, ten-fold serial dilutions of each cell suspension were

plated as described above to determine percentage of survival with

respect to untreated controls. Resistance to the growth inhibitory

activity of several antibiotics was assessed by the Kirby-Bauer disc

diffusion test in MH agar supplemented or not with 0.01 or

0.005% arabinose, using disks containing gentamicin (10 mg),

streptomycin (10 mg), tetracycline (30 mg), ampicillin (10 mg),

ciprofloxacin (5 mg), imipenem (10 mg), ceftazidime (30 mg),

colistin (10 mg) (Becton Dickinson), or polymyxin B (300 units;

Oxoid). Growth inhibition halo diameters were measured after 20

or 40 h of growth at 37uC for PAO1 or the PAO1 tolB conditional

mutant, respectively.

Galleria mellonella infection and persistence assays
P. aeruginosa strains were grown in MH with 0.2% arabinose,

and serial dilutions of bacterial cell suspensions in saline were

injected into G. mellonella larvae as described [32]. Larvae were

Table 1. Bacterial strains and plasmids used in this study.

Strain or plasmid Genotype and/or relevant characteristics Reference or source

P. aeruginosa

PAO1 (ATCC15692) Prototroph American type culture collection

PA14 Prototroph [20]

TR1 Prototroph; cystic fibrosis isolate [21]

PAO1 araCPBADtolB PAO1 with an arabinose-inducible additional copy of tolB inserted into the attB neutral site This work

PAO1 DtolB araCPBADtolB PAO1 araCPBADtolB deleted of the endogenous copy of tolB This work

PA14 araCPBADtolB PA14 with an arabinose-inducible additional copy of tolB inserted into the attB neutral site This work

PA14 DtolB araCPBADtolB PA14 araCPBADtolB deleted of the endogenous copy of tolB This work

TR1 araCPBADtolB TR1 with an arabinose-inducible additional copy of tolB inserted into the attB neutral site This work

TR1 DtolB araCPBADtolB TR1 araCPBADtolB deleted of the endogenous copy of tolB This work

E. coli

S17.1lpir thi pro hsdR hsdM+ recA RP4-2-Tc::Mu-Km::Tn7 lpir, GmR [22]

DH5aF’ recA1 endA1 hsdR17 supE44 thi-1 gyrA96 relA1 D(lacZYA-argF)U169[Q80 dlacZDM15], NalR [23]

Plasmid

pBluescript-II KS+ Cloning vector; ColE1 replicon; ApR Stratagene

pDM4 Suicide vector; sacBR, oriR6K; CmR [23]

pDM4DtolB pDM4 derivative for tolB in-frame deletion; CmR This work

pBEM9 Vector carrying the araCPBAD regulatory region with an altered RBS for stringent arabinose-
dependent control in P. aeruginosa; ApR

[24]

pBEM9-tolB pBEM9 derivative carrying the tolB coding sequence cloned by HindIII/EcoRI digestion
downstream of the araCPBAD regulatory region

This work

mini-CTX1 Self-proficient integration vector with tet, V-FRT-attP-MCS, ori, int, and oriT; TcR [26]

mini-CTX1-araCPBADtolB mini-CTX1 derivative carrying the araCPBADtolB from pBEM9 cloned by XhoI/EcoRI digestion This work

doi:10.1371/journal.pone.0103784.t001

Essentiality of TolB in P. aeruginosa
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incubated at 30uC for one week to monitor mortality. The lethal

dose 90% (LD90) was determined as described [29]. P. aeruginosa
persistence in G. mellonella larvae was assessed by infecting larvae

with about 106 CFUs. After 2 h of incubation at 30uC, larvae were

cut with a razor blade to recover the hemolymph. Ten-fold serial

dilutions of the hemolymph were plated on Pseudomonas Isolation

Agar containing 0.2% arabinose to determine the percentage of

viable cells with respect to the initial inoculum (infecting dose).

Electron microscopy
Scanning (SEM) and transmission electron microscopy (TEM)

were performed using previously described procedures [33]. For

SEM examination, bacterial cells were fixed with 2.5% glutaral-

dehyde in 0.1 M sodium cacodylate buffer (pH 7.4) overnight at

4uC, seeded onto polylisinated glass coverslips, left to adhere for

2 h at room temperature, and postfixed with 1% OsO4 in 0.1 M

sodium cacodylate buffer for 1 h at room temperature. Samples

were then dehydrated through a graded series of ethanol solutions,

critical point dried and gold sputtered, and examined with a SEM

Inspect F (FEI) scanning electron microscope. For TEM analysis,

bacterial cells were fixed with 2.5% glutaraldehyde, 2% parafor-

maldehyde and 2 mM CaCl2 in 0.1 M sodium cacodylate buffer

(pH 7.4) overnight at 4uC. After incubation, cells were washed in

cacodylate buffer and postfixed with 1% OsO4 in 0.1 M sodium

cacodylate buffer for 1 h at room temperature, treated with 1%

tannic acid in 0.05 M cacodylate buffer for 30 min and rinsed in

1% sodium sulphate in 0.05 cacodylate for 10 min. Fixed

specimens were washed, dehydrated through a graded series of

ethanol solutions (30 to 100% ethanol, each for 20 min) and

embedded in Agar 100 (Agar Scientific Ltd., U.K.) (1/3 resin for

1 h and 30 min; 1/2 resin for 3 h; 2/3 resin overnight). Ultrathin

sections obtained with a MT-2B Ultramicrotome (LKB –

Pharmacia) were stained for 20 min with uranyl acetate (3% in

70% ethanol) and Reynold’s lead citrate, and examined with an

EM 208 FEI transmission electron microscope.

Statistical analysis
Statistical analysis was performed with the software GraphPad

Instat, using one-way analysis of variance (ANOVA) followed by

Tukey-Kramer multiple comparison tests.

Results and Discussion

In order to generate a stable and unmarked P. aeruginosa tolB
conditional mutant, an arabinose-inducible copy of the tolB
coding sequence was inserted, together with the araC regulatory

Figure 1. Scheme of the strategy used to generate the P. aeruginosa PAO1 tolB conditional mutant. An exogenous copy of the tolB
coding sequence under the control of an arabinose-dependent promoter was inserted into the attB neutral site of the P. aeruginosa chromosome, by
using the integration-proficient plasmid mini-CTX1-araCPBADtolB (Table 1). After Flp-mediated removal of the mini-CTX1 backbone (not shown), the
resulting strain (PAO1 araCPBADtolB) is a merodiploid for tolB. In-frame deletion of the endogenous copy of tolB was obtained using the suicide
plasmid pDM4DtolB (Table 1). Sucrose selection was carried out in the presence of arabinose to select removal of the pDM4 backbone, followed by
PCR screening to identify clones carrying the tolB in-frame deletion. One of these clones was selected and used for the following analyses. This
conditional mutant was named PAO1 DtolB araCPBADtolB.
doi:10.1371/journal.pone.0103784.g001

Essentiality of TolB in P. aeruginosa
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gene, into the attB neutral site of the P. aeruginosa PAO1

chromosome. Then, in-frame deletion mutagenesis was carried

out in the presence of 0.2% arabinose to remove the endogenous

copy of tolB, leading to the generation of the tolB conditional

mutant named PAO1 DtolB araC-PBADtolB (Fig. 1).

Growth of PAO1 DtolB araC-PBADtolB in MH in microtiter

plates was almost completely abrogated unless arabinose was

added to the growth medium (Fig. 2A), and the same was observed

on MH agar plates (Fig. 2B). Moreover, growth of the PAO1 tolB
conditional mutant in MH broth was proportional to the

concentration of arabinose in the medium (Fig. 2C), confirming

that TolB expression is tightly regulated by arabinose in the PAO1

tolB conditional mutant. Comparable results were obtained in

SM9 minimal medium (data not shown). These data indicate that

tolB is essential for P. aeruginosa PAO1 growth under laboratory

conditions, and confirm the suitability of the strategy used to

generate stable conditional mutants in P. aeruginosa.

We then verified whether the crucial role of TolB in P.
aeruginosa growth is conserved in different genetic backgrounds.

To this aim, the tolB conditional mutation was introduced in the

reference strain PA14 and in the clinical strain TR1, isolated from

a cystic fibrosis patient [21] (Table 1). As previously observed for

PAO1, the growth of both PA14 and TR1 tolB conditional

mutants was strictly dependent on the addition of arabinose to the

culture medium (Figs. 2D–E), strongly suggesting that the

essentiality of TolB is a conserved trait in P. aeruginosa.

In order to obtain a number of TolB-deficient cells sufficient for

further analyses, a dual-refresh strategy in flask was developed,

using P. aeruginosa PAO1 and its isogenic tolB conditional

mutant as reference strains (Fig. 3A). Cells were grown in MH

broth for 14 h in the presence of 0.2% arabinose, and then two

successive refreshes were performed (starting OD600 of 0.25 and

0.03, respectively) in the presence or in the absence of arabinose.

As soon as a growth defect was observed in the PAO1 tolB
conditional mutant grown in the absence of arabinose (dashed box

in Fig. 3A), cells were collected and tested for different phenotypes

related to pathogenicity and persistence (Figs. 3B–E), as well as for

cellular morphology by electron microscopy (Fig. 4).

TolB-deficient cells were almost 1,000-fold more sensitive to the

detergent SDS compared to wild-type or TolB-proficient mutant

cells, i.e. cells of the tolB conditional mutant grown in the presence

of arabinose (Fig. 3B), suggestive of major defects in cell-envelope

integrity. Accordingly, electron microscopy revealed that TolB-

deficient cells form multi-septate short-cell chains, characterized

by abundant generation of outer membrane blebs and release of

cellular content, mainly at division sites (Fig. 4 and Figure S1),

indicating that TolB deficiency in P. aeruginosa negatively affects

cell elongation and outer membrane invagination during cell

division, as previously observed in other Gram-negative bacteria

[9], [34]. However, differently from what observed for the tolB
mutant of E. chrysanthemi [10], growth of the P. aeruginosa tolB
conditional mutant in the absence of arabinose could not be

restored by increasing the osmolarity of the culture medium with

up to 20% sucrose (Figure S2), suggesting that the growth defect of

this mutant is not only related to poor cell-envelope integrity.

Figure 2. TolB is essential for P. aeruginosa growth in vitro. (A) Growth curves of the wild-type strain PAO1 (filled circles) and the PAO1 tolB
conditional mutant in the presence (filled diamonds) or in the absence (open diamonds) of 0.2% arabinose in MH broth at 37uC in microtiter plates at
200 rpm. Results are the mean (6 SD) of three independent experiments performed in triplicate. (B) Growth of PAO1 and the PAO1 tolB conditional
mutant on MH agar plates with or without 0.2% arabinose (ARA) at 16 h. (C) Growth of the PAO1 tolB conditional mutant as described in legend to
panel A in the presence of increasing concentrations of arabinose (0–0.2%), measured as OD600 (left panel) or CFU/ml (right panel). The graphs are
representative of at least two independent experiments giving similar results. (D) Growth curves of P. aeruginosa PA14 or (E) the clinical strain TR1
(filled circles) and their corresponding tolB conditional mutants in the presence (filled squares) or in the absence (open squares) of 0.2% arabinose in
MH broth at 37uC in microtiter plates at 200 rpm. Results are the mean (6 SD) of two independent experiments performed in triplicate.
doi:10.1371/journal.pone.0103784.g002

Essentiality of TolB in P. aeruginosa
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TolB-deficient cells also showed significant defects in resistance

to the antibacterial activities of both human serum (Fig. 3C) and

the bactericidal antibiotic ofloxacin (Fig. 3D), measured as percent

survival compared to cells treated with heat-inactivated serum or

untreated cells, respectively. To further investigate the contribu-

tion of TolB to antibiotic resistance, susceptibility to the growth-

inhibitory activity of different antibiotics was investigated through

the Kirby-Bauer disc diffusion assay, by comparing the inhibitory

halos obtained by growing the PAO1 DtolB araC-PBADtolB
conditional mutant in the presence of low (growth permissive)

concentrations of arabinose with those obtained with the P.
aeruginosa PAO1 wild type (Table 2). Cells expressing low levels

of TolB showed an overall increase in sensitivity to almost all

antibiotics tested, including antibiotics currently used to treat P.
aeruginosa infections, such as the fluoroquinolone ciprofloxacin,

the carbapenem imipenem and the cephalosporin ceftazidime

[35], [36]. The only exceptions were ampicillin, to which P.
aeruginosa is intrinsically insensitive due to expression of the

chromosomally-encoded b-lactamase AmpC [35], [37], and

polymyxins (polymyxin B and colistin), for which no significant

difference in susceptibility was observed between wild-type cells

and mutant cells expressing low levels of TolB (Table 2). This

latter result, that was obtained by growing the tolB conditional

mutant in the presence of low, but growth permissive concentra-

tions of arabinose (Table 2), was verified by performing a killing

assay on wild-type and TolB-depleted mutant cells, obtained

through the dual-refresh strategy shown in Figure 3A. Differently

from what observed with the Kirby-Bauer assay, TolB-depleted

cells were significantly more sensitive to both antibiotics than wild-

type cells in the killing assay (Fig. 5), indicating that the cell

envelope defects associated with complete depletion of TolB

(Fig. 4) can also affect resistance to polymyxins. The cationic

antimicrobial peptides colistin and polymyxin B primarily act by

interacting with and disrupting the outer membrane, and then

damaging the cytoplasmic membrane [38]. Thus, it is plausible

that, differently from other antibiotics that need to reach

intracellular targets, the activity of polymyxins in the Kirby-Bauer

assay (Table 2) is poorly influenced by the lower cell envelope

integrity that is presumably associated with growth in the presence

of reduced TolB levels.

Since laboratory cultures not always reflect bacterial growth and

virulence during infection, we also assessed the ability of the PAO1

tolB conditional mutant to cause infection and persist in the well-

established G. mellonella model. This is an easy-to-handle and cost

effective infection model to study P. aeruginosa pathogenicity, and

a positive correlation has been observed between virulence of

several P. aeruginosa mutants in G. mellonella and mice [32]. The

tolB conditional mutant was strongly impaired in pathogenicity in

G. mellonella, with an LD90 about 600,000 fold higher than that of

the wild type (2.5 cells/larva and 1.56106 cells/larva for PAO1

and PAO1 DtolB araC-PBADtolB, respectively). In order to assess

the effect of TolB depletion also on P. aeruginosa persistence in
vivo during the infection, G. mellonella larvae were infected with a

high infecting dose (corresponding to about 106 CFUs) and the

number of viable cells in the hemolymph was determined at 2 h

post-infection. As shown in Fig. 3E, TolB-deficient cells displayed

markedly reduced ability to persist in G. mellonella larvae with

respect to wild-type or TolB-proficient mutant cells, while no

Figure 3. TolB is crucial for P. aeruginosa resistance and persistence. (A) Growth of PAO1 (circles) and PAO1 tolB conditional mutant
(diamonds) at 37uC in MH broth at 200 rpm in flasks after two successive subcultures in the presence (filled symbols) or in the absence (open
symbols) of 0.2% arabinose. The graph is representative of several assays giving similar results. (B) Lytic effect of SDS (0–5%), measured as decrease in
cell suspension turbidity (OD600), on PAO1 wild-type cells (WT, filled circles), TolB-deficient mutant cells (tolB, open diamonds) and TolB-proficient
mutant cells (tolB TolB+, filled diamonds). (C) Resistance of WT, tolB and tolB TolB+ to the bactericidal activity of 50% human serum or (D) to the
bactericidal antibiotic ofloxacin (0.5 mg/L), expressed as percent survival compared to untreated cells. Results in panels B–D are the mean (6 SD) of
four independent experiments. (E) Persistence of WT, tolB and tolB TolB+ cells in G. mellonella larvae at 2 h post-infection. Sixteen larvae per group
were infected in three independent assays. ***, P,0.001 (one-way ANOVA).
doi:10.1371/journal.pone.0103784.g003

Essentiality of TolB in P. aeruginosa
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significant differences in cell viability were observed between the

same cell types in saline solution (Figure S3). This result indicates

that TolB is also important for resistance to the antimicrobial

defences of the G. mellonella hemolymph [32].

Conclusions

In this work, we demonstrated that depletion of TolB, the

periplasmic component of the Tol-Pal complex, abolishes P.
aeruginosa growth in vitro, and markedly reduces persistence and

Figure 4. TolB-deficient cells show defects in outer membrane
stability and cell division. SEM and TEM analysis (left and right
panels, respectively) of PAO1 wild-type cells (A,B), TolB-deficient mutant
cells (C,D) and TolB-proficient mutant cells (E,F), grown as described in
the legend to Fig. 3A. Bars: 3 mm (left panels) or 1 mm (right panels). The
inset in panel D shows an enlargement of the boxed area.
Abbreviations: IM, inner membrane; OM, outer membrane.
doi:10.1371/journal.pone.0103784.g004

Figure 5. TolB depletion increases P. aeruginosa sensitivity to
polymyxins in a killing assay. Survival of PAO1 wild-type cells (filled
circles) and TolB-deficient mutant cells (open diamonds), obtained as
shown in Figure 3A, after 1-h treatment with 4, 1 or 0.25 mg/L of
colistin (left panel), or 2, 0.5 or 0.125 mg/L of polymyxin B (right panel).
Values are expressed as percent survival compared to untreated cells,
and the results represent the mean (6 SD) of three independent
experiments. **, P,0.01 (one-way ANOVA).
doi:10.1371/journal.pone.0103784.g005
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pathogenicity in an animal infection model, as well as resistance to

human serum and several antibiotics. This evidence leads us to

propose TolB as a suitable candidate for the development of new

drugs against P. aeruginosa. Since TolB is a soluble protein

residing in the periplasmic space [1], [15], it should be more

accessible to drugs than cytosolic targets, and drug binding to

TolB could delay later extrusion by efflux pumps, which represent

key components of both intrinsic and acquired resistance in P.
aeruginosa [39]. Considering the high level of intrinsic antibiotic

resistance in P. aeruginosa [40], [41], and the overall increase in

drug susceptibility observed in TolB-depleted P. aeruginosa cells

(Figs. 3D and 5; Table 2), a potential anti-TolB compound could

also exhibit synergism with available antibiotics, likely revitalizing

some of our current therapeutic options. It should be noted that,

although not essential for growth in vitro, the Tol-Pal complex is

important for antibiotic resistance and pathogenicity also in other

Gram-negative pathogens (reviewed in [8]), suggesting that anti-

TolB therapy could be ultimately beneficial for the treatment of

different bacterial infections.

Supporting Information

Figure S1 SEM and TEM images (left and right panels,
respectively) of TolB-deficient mutant cells grown as
described in the legend to Figure 3A. Bars: 1 mm (left panel)

or 0.5 mm (right panel).

(PDF)

Figure S2 Growth curves of the wild-type strain PAO1
(circles, solid lines) and the PAO1 tolB conditional

mutant (diamonds, dashed lines) in microtiter plates

at 376C in MH broth supplemented with increasing

concentrations of sucrose (0–20%). The graph is represen-

tative of three independent experiments giving similar results.

(PDF)

Figure S3 Viability of PAO1 wild-type cells (WT), TolB-
deficient mutant cells (tolB) and TolB-proficient mutant
cells (tolB TolB+) after 3-h incubation in saline solution

at 376C, expressed as percent survival with respect to

the number of viable cells at time 0. Results are the mean (6

SD) of four independent experiments. No significant differences

were detected (one-way ANOVA).

(PDF)

Table S1 Primers used in this study.

(PDF)
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