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Antibiotics represent our bulwark to combat bacterial infections, but the spread of
antibiotic resistance compromises their clinical efficacy. Alternatives to conventional
antibiotics are urgently needed in order to complement the existing antibacterial arsenal.
The macrolide antibiotic azithromycin (AZM) provides a paradigmatic example of an
“unconventional” antibacterial drug. Besides its growth-inhibiting activity, AZM displays
potent anti-inflammatory properties, as well as antivirulence activity on some intrinsically
resistant bacteria, such as Pseudomonas aeruginosa. In this bacterium, the antivirulence
activity of AZM mainly relies on its ability to interact with the ribosome, resulting in direct
and/or indirect repression of specific subsets of genes involved in virulence, quorum
sensing, biofilm formation, and intrinsic antibiotic resistance. Both clinical experience
and clinical trials have shown the efficacy of AZM in the treatment of chronic pulmonary
infections caused by P. aeruginosa. The aim of this review is to combine results from
laboratory studies with evidence from clinical trials in order to unify the information on the
in vivo mode of action of AZM in P. aeruginosa infection.

Keywords: antibiotic, cystic fibrosis, inflammation, macrolide, regulation, virulence

INTRODUCTION
Antibiotics are used as first line drugs for the treatment of bac-
terial infections, but the widespread resistance to these agents
combined with the shortage of novel antimicrobial compounds
developed by the pharmaceutical industry results in an urgent need
for new strategies to combat bacterial infections (Fernebro, 2011).
Virulence factors are essential for bacterial pathogens to cause
infection. Hence, suppression of virulence factor production,
i.e., antivirulence therapy, has become an attractive anti-infective
approach. In-depth understanding of the mechanisms by which
pathogens cause disease has been essential for the recognition of
suitable targets for antivirulence drugs (Cegelski et al., 2008; Rasko
and Sperandio, 2010). Target-based rational design and screen-
ing of chemical libraries allowed the identification of a variety
of virulence inhibitors (Clatworthy et al., 2007; Law et al., 2013).
However, none of the antivirulence compounds developed so far
have entered into clinical practice.

The unpredicted antivirulence activity observed a posteriori
among macrolide antibiotics prompted revisiting of laboratory
and clinical data to assess the potential of these compounds
as antivirulence drugs. In this review, the clinical impact
of azithromycin (AZM) on patients suffering from Pseu-
domonas aeruginosa infection are discussed in the light of the
biological activities exerted by AZM on both the pathogen and
the host.

THE MULTIFARIOUS BIOLOGICAL ACTIVITIES OF
MACROLIDES
Macrolides are polyketide compounds characterized by the pres-
ence of a 14- (e.g., erythromycin), 15- (e.g., AZM, Figure 1), or

16- (e.g., josamycin) membered macrocyclic lactone to which one
or more amino and/or neutral sugars are attached.

Macrolides have many important biological characteristics
including antibacterial, antifungal and immunomodulatory prop-
erties. Erythromycin is the progenitor of this class of antibiotics
and has served as the scaffold for the generation of newer semisyn-
thetic macrolides (Washington and Wilson, 1985; Pal, 2006). AZM
was launched in 1991 and rapidly became one of the most fre-
quently used antimicrobials for outpatients (Hicks et al., 2013). A
number of favorable pharmacological properties contributed to
the success of AZM as an antibiotic, including acid resistance, a
short time to achieve peak concentrations with an up to 800-fold
accumulation in phagocytes at the infection site, and long half-life
allowing a large single oral dose to maintain bacteriostatic activity
in the infected tissue for 4 days (Girard et al., 1987; Foulds et al.,
1990; Blumer, 2005).

Macrolide antibiotics inhibit bacterial growth by binding the
23S rRNA in the 50S subunit of the bacterial ribosome, thereby
preventing the transfer of tRNA from the A to the P site of the
ribosome. Binding to the A site prevents addition of an incom-
ing amino acid-charged tRNA to the nascent polypeptide chain,
ultimately aborting polypeptide growth (Retsema and Fu, 2001;
Poehlsgaard and Douthwaite, 2005).

Some macrolides (e.g., rapamycin) lack antibacterial activity
but possess potent immunosuppressive or immunomodulatory
properties, and are therefore used in the therapy of autoimmune
disorders and proliferative diseases. They act through different
mechanisms at the level of the immune system, ultimately interfer-
ing with lymphocyte activation and cytokine production (McAlis-
ter et al., 2002; Ferrer et al., 2011; Salmond and Zamoyska, 2011).
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FIGURE 1 | Chemical structure of azithromycin, a drug belonging to

the azalide subclass of macrolides. The 15-membered lactone ring is
derived from erythromycin, upon incorporation of a methyl-substituted
nitrogen atom (bold).

Starting from the late 1960s, evidence has been obtained show-
ing that also macrolide antibiotics have anti-inflammatory and
pro-kinetic effects which play a prominent role in some infec-
tions (Itkin and Menzel, 1970). These effects have extensively been
reviewed in the recent literature (Amsden, 2005; Giamarellos-
Bourboulis, 2008; Kanoh and Rubin, 2010; Steel et al., 2012;
Aminov, 2013).

Macrolide antibiotics are typically bacteriostatic at therapeu-
tic concentrations (Retsema et al., 1987). Different from cell-
disrupting agents (e.g., β-lactams), they are unlikely to cause
bacterial lysis and release of cell-associated pro-inflammatory
molecules, thereby avoiding the induction of a detrimental inflam-
matory response (Spreer et al., 2003; Anderson et al., 2007).
Sub-inhibitory concentrations of macrolides cause substantial
inhibition of the synthesis of virulence factors in both Gram-
positive and Gram-negative bacteria (Steel et al., 2012).

Pseudomonas aeruginosa is a paradigmatic example of a
microorganism with intrinsic resistance to multiple classes of
antibiotics, including macrolides. Nonetheless, a number of clin-
ical studies have demonstrated that patients suffering from both
intermittent and chronic P. aeruginosa infection, e.g., cystic fibrosis
(CF), chronic obstructive pulmonary disease (COPD), and diffuse
panbronchiolitis (DPB), benefit from AZM treatment (reviewed
by Steel et al., 2012 and Aminov, 2013). Hereafter, the many effects
of AZM on P. aeruginosa virulence and their impact on infection
are discussed.

EFFECT OF AZITHROMYCIN ON P. aeruginosa CELLS
The pathogenic potential of P. aeruginosa relies on the production
of cell-surface components with pro-inflammatory and/or adhe-
sion activity, and a huge arsenal of virulence factors (Driscoll et al.,
2007). Moreover, its ability to adopt the biofilm lifestyle is critical
in chronic infections. In P. aeruginosa, the extracellular polysac-
charides (EPSs) Psl, Pel and alginate play an important role in

maintaining the biofilm structure and in resistance to antibiotics
and to the host immune system (Wei and Ma, 2013).

AZM is not approved for the treatment of infections caused
by P. aeruginosa and there are no published breakpoints for this
species. The AZM minimum inhibitory concentrations (MICs) for
P. aeruginosa range from 8 to 512 μg/ml, depending on the strain
and the testing procedure (e.g., Kita et al., 1991; Tateda et al., 1996;
Nicolau et al., 1999; Morita et al., 2001). Early studies showed that
sub-inhibitory AZM concentrations (sub-MIC AZM) suppressed
motility and the production of several virulence factors, includ-
ing proteases, pyocyanin, exotoxin A, phospholipase C (PLC),
and EPSs in P. aeruginosa (Kita et al., 1991; Molinari et al., 1992;
Molinari et al., 1993; Ichimiya et al., 1996; Nagino and Kobayashi,
1997; Favre-Bonté et al., 2003; Gillis and Iglewski, 2004). Since in
P. aeruginosa the expression of many virulence factors is activated
at the transcriptional level by the 3-oxo-C12-homoserine lactone
(3OC12-HSL) and butyryl-homoserine lactone (C4-HSL) quo-
rum sensing (QS) signal molecules, some studies focused on the
effect of sub-MIC AZM on these two QS systems.

AZM (2 μg/ml) reduces the production of both 3OC12-HSL
and C4-HSL. Transcriptional repression of the corresponding
synthase/receptor genes lasI/lasR and rhlI/rhlR contributes to
this effect (Tateda et al., 2001). Accordingly, transcriptomic and
proteomic analyses confirmed that AZM down-regulates the
expression of many QS-dependent genes, as those encoding the
pilus, flagellum, and oxidative stress response proteins (Nalca
et al., 2006; Skindersoe et al., 2008; Kai et al., 2009). In P. aerug-
inosa, the AZM-affected transcriptome largely overlaps with the
Gac/Rsm regulon, which also includes both las and rhl QS genes
(Pérez-Martínez and Haas,2011). In the Gac/Rsm regulatory path-
way, the trans-membrane histidine kinase GacS phosphorylates
the response regulator GacA in response to an unknown signal.
Phosphorylated GacA activates the transcription of the two small
regulatory RNAs (srRNAs) RsmY and RsmZ. At high concentra-
tions, these srRNAs sequester the mRNA-binding protein RsmA,
which acts as a translational repressor. RsmA directly or indi-
rectly affects the expression of many virulence genes, including
those implicated in QS regulation (Coggan and Wolfgang, 2012;
Frangipani et al., 2014). Sub-MIC AZM reduced the expression of
several genes in the Gac/Rsm regulon, and inhibited the transcrip-
tion of the still uncharacterized ORFs PA0588–PA0584, which are
required for full expression of rsmZ and rsmY (Kai et al., 2009;
Pérez-Martínez and Haas, 2011). Therefore, AZM-dependent
repression of 3OC12-HSL and C4-HSL synthesis could, at least in
part, be explained by a cascade mechanism in which AZM represses
expression of the PA0588–PA0584 genes which are required for full
transcription of rsmZ and rsmY, resulting in down-regulation of
QS gene expression. However, the effect of AZM on rsmZ and rsmY
transcription was not completely abrogated in a PA0588–PA0584
deletion mutant, suggesting that AZM affects the Gac/Rsm system
and QS also via alternative pathways (Pérez-Martínez and Haas,
2011; Figure 2). Allied to this, AZM also repressed transcription
of genes for the synthesis of 3OC12-HSL and C4-HSL precursors
(Kai et al., 2009).

Sub-MIC AZM has many pleiotropic effects on P. aeruginosa
that cannot be explained only by its interference with the Gac/Rsm
and QS systems. Examples are (i) the inhibitory effect on alginate
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FIGURE 2 | Proposed molecular mechanisms for AZM-mediated

inhibition of P. aeruginosa virulence. AZM, even at sub-inhibitory
concentrations, interacts with the 50S ribosomal subunit and selectively
affects the expression of a specific subset of genes, such as those for the
Gac/Rsm and quorum sensing (QS) systems, and other unidentified
transcriptional factors involved in regulation of virulence genes. Some
genes (e.g., the QS regulator gene rhlR) may be affected by AZM via
independent and overlapping regulatory pathways, both at the
transcriptional and post-transcriptional level. The final outcome of this
cascade is the suppression of a number of virulence-related phenotypes
(see text for details). T-shaped lines represent negative controls.

production (Ichimiya et al., 1996; Favre-Bonté et al., 2003; Lutz
et al., 2012), (ii) increased susceptibility to serum bactericidal
activity, probably due to alterations of cell-surface structures
such as lipopolysaccharides and outer membrane proteins (Tateda
et al., 1993, 1994), (iii) increased susceptibility to some antimicro-
bials, due to down-regulation of the MexAB-OprM efflux pump
(Sugimura et al., 2008), and (iv) killing of stationary-phase and
biofilm-forming cells (Tateda et al., 1996; Imamura et al., 2005).

Some effects of sub-MIC AZM are dependent on a direct inter-
action with the ribosome. Indeed, heterologous expression of a
Clostridium perfrigens 23S rRNA methylase gene in P. aeruginosa
increased AZM resistance, counteracted inhibition of virulence
factors production, and alleviated killing of stationary-phase cells
(Kohler et al., 2007).

Macrolides block elongation of the nascent peptide chain
and cause premature dissociation of the tRNA-charged growing
polypeptide. Increased release of these abortive peptidyl-tRNAs, a
phenomenon known as “drop-off”, impairs the normal turnover
of tRNAs, affecting the overall protein translation rate (Retsema
and Fu, 2001; Gödeke et al., 2013). Interestingly, overexpression
in P. aeruginosa of the Pth peptidyl-tRNA hydrolase, an enzyme
which releases uncharged tRNA from the peptidyl-tRNA, partially
restored tRNAs turn-over and reversed some phenotypes caused
by sub-MIC AZM, such as the stationary-phase killing and inhi-
bition of pyocyanin and rhamnolipid production (Gödeke et al.,

2013). Therefore, some phenotypes induced by sub-MIC AZM
are determined by the increased peptidyl-tRNAs drop-off and
defective turn-over of tRNAs. Since production of pyocyanin and
rhamnolipids is dependent on the Rhl QS system, Gödeke et al.
(2013) by analysing the rhlI and rhlR coding sequences found
that the second codon of rhlR (AGG, encoding Arg) is very rarely
used in P. aeruginosa, suggesting that translation of this gene
could be particularly susceptible to defects in tRNAs turn-over.
Accordingly, replacement of this codon with the preferentially
used codon CGC reverted AZM-mediated inhibition of rhamno-
lipids and pyocyanin production (Gödeke et al., 2013). This result
suggests that sub-MIC AZM may selectively affect the expres-
sion of distinct subset of genes, depending on their codon usage.
Thus, the pleiotropic effects of sub-MIC AZM on P. aeruginosa are
mainly due to AZM interaction with the ribosome and interference
with protein synthesis. Differential codon usage in P. aeruginosa
might explain the selective activity of AZM in translation of spe-
cific proteins. Besides RhlR, translation of still unidentified global
regulators could also be affected by sub-MIC AZM concentra-
tions, explaining AZM effects on P. aeruginosa transcriptome and
physiology (Nalca et al., 2006; Skindersoe et al., 2008; Kai et al.,
2009).

EFFECT OF AZITHROMYCIN ON P. aeruginosa INFECTION
In Japan, macrolides have been used since the 1980s to treat DPB,
a rare inflammatory lung disease that mainly affects elderly Asian
people, in which chronic P. aeruginosa lung infection is associ-
ated with a poor outcome (Schultz, 2004). In the late 1990s, the
similarities between DBP and CF drove Jaffé et al. (1998) to use
AZM as a last resort agent for treatment of a teenager with CF
on the waiting list for heart–lung transplantation; AZM treatment
almost doubled the patient’s pulmonary function, leading to his
removal from the list. This promising finding was confirmed by
an open-label study on seven CF children infected by P. aerugi-
nosa not responding to conventional therapy (Jaffé et al., 1998).
Thereafter, several clinical trials have been conducted to validate
AZM efficacy in CF. A recent meta-analysis of ten studies, includ-
ing almost 1,000 patients, showed that AZM therapy is associated
with a small but consistent improvement in respiratory function
at 6 months, and has a good safety profile (Southern et al., 2012).

Hereafter, results from laboratory studies will be combined
with evidence from clinical trials in order to summarize the
information on the mode of action of AZM in P. aeruginosa
infection. As described above, sub-MIC AZM exerts multiple
effects on P. aeruginosa, including virulence inhibition, killing
of stationary-phase and/or biofilm-forming cells, and synergism
with other antimicrobials and with serum complement (Tateda
et al., 1996; Imamura et al., 2005; Hoffmann et al., 2007; Lutz
et al., 2012). In two chronic lung infection models of CF mice
challenged with mucoid (alginate-producing) P. aeruginosa iso-
lates, AZM suppressed QS-regulated virulence factors, drastically
reduced the bacterial load in the lung, and improved lung pathol-
ogy (Hoffmann et al., 2007; Tsai et al., 2009). However, in only
one study AZM reduced P. aeruginosa associated mortality (Tsai
et al., 2009). It was also found that AZM attenuated the inflam-
matory response and promoted macrophage phagocytic activity
(Tsai et al., 2009), as previously reported for AZM-treated COPD
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patients (Hodge et al., 2008). The strongly reduced bacterial load
in the lungs of AZM-treated mice could be explained by concomi-
tant factors, including killing of biofilm-forming cells, improved
phagocytic activity of macrophages, and/or increased susceptibil-
ity of QS-attenuated P. aeruginosa to the inflammatory/immune
response (Hoffmann et al., 2007; Tsai et al., 2009). However,
a reduced bacterial load was not observed for other antiviru-
lence drugs capable of protecting mice from lethal P. aeruginosa
lung infections (Miyairi et al., 2006; Imperi et al., 2013), sug-
gesting that AZM suppresses the infection by targeting both P.
aeruginosa and the immune system. Accordingly, relevant anti-
inflammatory effects of AZM were also observed in CF mice
that were not infected with P. aeruginosa, where AZM treatment
resulted in attenuated cellular infiltration and reduced cytokine
release (Legssyer et al., 2006). Therefore, the anti-inflammatory
properties of AZM in the lung are also independent of its anti-
Pseudomonas activity. It should be noted that previous work using
non-CF murine models of lethal sepsis or pneumonia caused
by non-mucoid and mucoid P. aeruginosa isolates, respectively,
failed to show protective effects of AZM alone, although AZM
acted synergistically with ceftazidime in both infection mod-
els (Nicolau et al., 1997, 1999). This suggests that experimental
conditions have a considerable impact on the outcome of AZM
treatment in animal infection models and/or that special features
of CF lungs could contribute to improved AZM activity on P.
aeruginosa.

The therapeutic efficacy of AZM in CF has been proven
in many clinical trials. Beneficial effects were observed in
CF patients chronically-infected with P. aeruginosa and, to a
lesser extent, in uninfected CF patients (reviewed in South-
ern et al., 2012). The latter observation is consistent with the
finding that AZM significantly reduced various serum inflam-
matory markers in CF patients not infected with P. aerug-
inosa (Ratjen et al., 2012), confirming again that AZM has
anti-inflammatory effects independent of its antivirulence activ-
ity. However, some pulmonary function parameters, includ-
ing forced expiratory volume in 1s (FEV1), were slightly
less improved in patients without chronic P. aeruginosa infec-
tion compared to chronically-infected patients (Southern et al.,
2012). Whether different outcomes are related primarily to
the anti-Pseudomonas activity of AZM or to the early stage of
lung disease in young patients uninfected with P. aeruginosa
(Clement et al., 2006; Saiman et al., 2010) cannot be established
at present.

Regarding the antivirulence activity of AZM in humans, a ret-
rospective study observed a correlation between the inhibitory
effect of AZM on PLC production by P. aeruginosa strains iso-
lated from CF patients and the observed FEV1 improvement
after AZM therapy (Nguyen et al., 2007), suggesting that in vivo
PLC production is a main target of AZM. This finding fits
well with the relevant role of P. aeruginosa PLC in the impair-
ment of lung function in a mouse infection model (Wargo
et al., 2011). A more recent study in intubated patients col-
onized with P. aeruginosa attempted to directly correlate the
clinical effect of AZM on the patient with its antivirulence
activity (van Delden et al., 2012). Although no relevant differ-
ences were observed between AZM-treated and untreated patients

with regard to the occurrence of ventilator-associated pneumo-
nia (VAP), a lower incidence of VAP was reported in a small
sub-group (n = 5) of AZM-treated patients infected by P. aerugi-
nosa strains producing high levels of rhamnolipids compared with
the corresponding untreated group. Although preliminary, this
observation suggests that AZM could be more effective in indi-
viduals infected by these highly virulent strains (van Delden et al.,
2012).

Only few studies measured AZM levels during administration
to CF patients. Data so far available suggest a wide range of AZM
concentrations in sputa (0.6−79.3 μg/ml), depending on the indi-
vidual patient and the dosing regimen (Baumann et al., 2004;
Wilms et al., 2006). As discussed above, the growth inhibitory
activity of AZM is strongly influenced by culture conditions. Since
AZM MICs for P. aeruginosa are low (2–16 μg/ml) when deter-
mined in eukaryotic cell media or in mouse bronchoalveolar lavage
fluid (Buyck et al., 2012), it may be possible that AZM also exerts
some inhibition of P. aeruginosa growth in CF lungs. However,
the insignificant differences in the frequency and concentration of
P. aeruginosa in sputa from AZM-treated and untreated patients
(Equi et al., 2002; Saiman et al., 2003; Clement et al., 2006) argue
against this possibility.

CONCLUSION
From a microbiological perspective, the therapeutic efficacy of
an antimicrobial compound results mainly from its ability to
impair bacterial growth, and this assumption has driven antibi-
otic research until now. AZM provides a clear example of
how the therapeutic efficacy of an antimicrobial cannot exclu-
sively be attributed to growth impairment. Anti-inflammatory
and antivirulence properties likely predominate in the treat-
ment of infections involving AZM-resistant pathogens, as in
the case of P. aeruginosa pulmonary infections. Although there
is strong evidence of antivirulence activity in vitro, it is not
possible to assess the contribution of this activity to the effi-
cacy of AZM in vivo because of concomitant anti-inflammatory
activity and bactericidal effects under certain conditions. Accord-
ing to the current model, both antibacterial and antivirulence
activities are based on the interaction of AZM with the ribo-
some, so that tightly interwoven effects on bacterial viability
and production of virulence factors are hardly distinguishable in
vivo.

Beneficial effects have so far been documented in CF patients
treated with AZM for up to 6 months, while reduced efficacy
was associated with longer treatment duration (Southern et al.,
2012; Fleet et al., 2013). Loss of efficacy could be explained by the
emergence of P. aeruginosa subpopulations that become insensi-
tive to the antivirulence activity. This hypothesis could be verified
by testing the virulence properties and the response to AZM in
serial P. aeruginosa isolates collected during long-term AZM ther-
apy. Under this condition, the emergence of macrolide resistance
among both commensal bacteria and co-infecting pathogens is a
matter of concern and deserves further study (Aminov, 2013).

In conclusion, AZM offers a unique model to reconsider the
central dogma of antibiotic activity, but further research is needed
to gain more insight into the effects of AZM on both the pathogen
and the host.
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