C. Torre, C. Perret, and S. Colnot, Molecular Determinants of Liver Zonation, Prog Mol Biol Transl Sci, vol.97, pp.127-50, 2010.
DOI : 10.1016/B978-0-12-385233-5.00005-2

M. Colletti, C. Cicchini, and A. Conigliaro, Convergence of Wnt Signaling on the HNF4??-Driven Transcription in Controlling Liver Zonation, Gastroenterology, vol.137, issue.2, pp.660-72, 2009.
DOI : 10.1053/j.gastro.2009.05.038

N. Fausto, Liver regeneration, Journal of Hepatology, vol.32, pp.19-31, 2000.
DOI : 10.1016/S0168-8278(00)80412-2

M. Gk, Liver regeneration: alternative epithelial pathways, Int J Biochem Cell Biol, vol.43, pp.173-182, 2011.

L. Greenbaum, D. Cressman, B. Haber, and R. Taub, Coexistence of C/EBP alpha, beta, growth-induced proteins and DNA synthesis in hepatocytes during liver regeneration. Implications for maintenance of the differentiated state during liver growth., Journal of Clinical Investigation, vol.96, issue.3, pp.1351-65, 1995.
DOI : 10.1172/JCI118170

A. Treyer and A. Musch, Hepatocyte Polarity, Comprehensive Physiol, vol.13, issue.8, pp.243-87, 2013.
DOI : 10.1002/cphy.c120009

G. Darlington, N. Wang, and R. Hanson, C/EBP??: a critical regulator of genes governing integrative metabolic processes, Current Opinion in Genetics & Development, vol.5, issue.5, pp.565-70, 1995.
DOI : 10.1016/0959-437X(95)80024-7

P. Flodby, P. Antonson, and C. Barlow, Differential Patterns of Expression of Three C/EBP Isoforms, HNF-1, and HNF-4 after Partial Hepatectomy in Rats, Experimental Cell Research, vol.208, issue.1, pp.248-56, 1993.
DOI : 10.1006/excr.1993.1244

G. Karaca, M. Swiderska-syn, and G. Xie, TWEAK/Fn14 Signaling Is Required for Liver Regeneration after Partial Hepatectomy in Mice, PLoS ONE, vol.43, issue.1, p.83987, 2014.
DOI : 10.1371/journal.pone.0083987.s006

H. Zhang, L. Dong, G. Sun, and A. W. , Downregulation of hepatic stimulator substance during the early phase of liver regeneration inhibits E-cadherin expression in mice, The International Journal of Biochemistry & Cell Biology, vol.47, pp.38-46, 2014.
DOI : 10.1016/j.biocel.2013.11.019

C. Mancone, B. Conti, and L. Amicone, Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes, Journal of Hepatology, vol.52, issue.2, pp.234-277, 2010.
DOI : 10.1016/j.jhep.2009.11.013

M. Nieto, THE SNAIL SUPERFAMILY OF ZINC-FINGER TRANSCRIPTION FACTORS, Nature Reviews Molecular Cell Biology, vol.3, issue.3, pp.155-66, 2002.
DOI : 10.1038/nrm757

H. Acloque, M. Adams, K. Fishwick, M. Bronner-fraser, and M. Nieto, Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease, Journal of Clinical Investigation, vol.119, issue.6, pp.1438-1487, 2009.
DOI : 10.1172/JCI38019DS1

A. Cano, M. Perez-moreno, and I. Rodrigo, The transcription factor Snail controls epithelial???mesenchymal transitions by repressing E-cadherin expression, Nature Cell Biology, vol.51, issue.2, pp.76-83, 2000.
DOI : 10.1006/dbio.1998.9047

M. Nieto, M. Sargent, D. Wilkinson, and J. Cooke, Control of cell behavior during vertebrate development by Slug, a zinc finger gene, Science, vol.264, issue.5160, pp.835-844, 1994.
DOI : 10.1126/science.7513443

E. Batlle, E. Sancho, and C. Franci, The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nature Cell Biology, vol.17, issue.2, pp.84-93, 2000.
DOI : 10.1083/jcb.111.3.1265

I. Poser, D. Dominguez, D. Herreros, and A. , Loss of E-cadherin Expression in Melanoma Cells Involves Up-regulation of the Transcriptional Repressor Snail, Journal of Biological Chemistry, vol.276, issue.27, pp.24661-24667, 2001.
DOI : 10.1074/jbc.M011224200

K. Yokoyama, N. Kamata, and E. Hayashi, Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro, Oral Oncology, vol.37, issue.1, pp.65-71, 2001.
DOI : 10.1016/S1368-8375(00)00059-2

W. Jiao, K. Miyazaki, and Y. Kitajima, Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo, British Journal of Cancer, vol.14, issue.1, pp.98-101, 2002.
DOI : 10.1016/S1368-8375(00)00059-2

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

R. Kalluri and R. Weinberg, The basics of epithelial-mesenchymal transition, Journal of Clinical Investigation, vol.119, issue.6, pp.1420-1428, 2009.
DOI : 10.1172/JCI39104

A. Barrallo-gimeno and M. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer, Development, vol.132, issue.14, pp.3151-61, 2005.
DOI : 10.1242/dev.01907

J. Zavadil and E. Bottinger, TGF-?? and epithelial-to-mesenchymal transitions, Oncogene, vol.285, issue.37, pp.5764-74, 2005.
DOI : 10.1038/ncb1173

J. Xu, S. Lamouille, and R. Derynck, TGF-??-induced epithelial to mesenchymal transition, Cell Research, vol.3, issue.2, pp.156-72, 2009.
DOI : 10.1101/gad.276304

H. Peinado, D. Olmeda, and C. A. Snail, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?, Nature Reviews Cancer, vol.176, issue.6, pp.415-443, 2007.
DOI : 10.1038/nrc2131

T. Vincent, E. Neve, and J. Johnson, A SNAIL1???SMAD3/4 transcriptional repressor complex promotes TGF-?? mediated epithelial???mesenchymal transition, Nature Cell Biology, vol.91, issue.8, pp.943-50, 2009.
DOI : 10.1002/(SICI)1097-0215(19990531)81:5<748::AID-IJC14>3.3.CO;2-Y

F. Garibaldi, C. Cicchini, and A. Conigliaro, An epistatic mini-circuitry between the transcription factors Snail and HNF4?? controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs, Cell Death and Differentiation, vol.113, issue.6, pp.937-983, 2012.
DOI : 10.1038/embor.2008.74

URL : https://hal.archives-ouvertes.fr/pasteur-00980144

C. Bracken, P. Gregory, and N. Kolesnikoff, A Double-Negative Feedback Loop between ZEB1-SIP1 and the microRNA-200 Family Regulates Epithelial-Mesenchymal Transition, Cancer Research, vol.68, issue.19, pp.7846-54, 2008.
DOI : 10.1158/0008-5472.CAN-08-1942

P. Gregory, A. Bert, and E. Paterson, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nature Cell Biology, vol.94, issue.5, pp.593-601, 2008.
DOI : 10.1126/science.1115079

S. Lamouille, D. Subramanyam, R. Blelloch, and R. Derynck, Regulation of epithelial???mesenchymal and mesenchymal???epithelial transitions by microRNAs, Current Opinion in Cell Biology, vol.25, issue.2, pp.200-207, 2013.
DOI : 10.1016/j.ceb.2013.01.008

Z. Xu, Q. Yu, and Y. Du, Knockdown of Long Non-coding RNA HOTAIR Suppresses Tumor Invasion and Reverses Epithelial-mesenchymal Transition in Gastric Cancer, International Journal of Biological Sciences, vol.9, issue.6, pp.587-97, 2013.
DOI : 10.7150/ijbs.6339

L. Ying, Q. Chen, and Y. Wang, Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition, Molecular BioSystems, vol.83, issue.9, pp.2289-94, 2012.
DOI : 10.1039/c2mb25070e

B. Baum, J. Settleman, and M. Quinlan, Transitions between epithelial and mesenchymal states in development and disease, Seminars in Cell & Developmental Biology, vol.19, issue.3, pp.294-308, 2008.
DOI : 10.1016/j.semcdb.2008.02.001

M. Esteban, X. Bao, and Q. Zhuang, The mesenchymal-to-epithelial transition in somatic cell reprogramming, Current Opinion in Genetics & Development, vol.22, issue.5, pp.423-431, 2012.
DOI : 10.1016/j.gde.2012.09.004

P. Samavarchi-tehrani, A. Golipour, and L. David, Functional Genomics Reveals a BMP-Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell Reprogramming, Cell Stem Cell, vol.7, issue.1, pp.64-77, 2010.
DOI : 10.1016/j.stem.2010.04.015

J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-90, 2009.
DOI : 10.1016/j.cell.2009.11.007

G. Prindull, Hypothesis: Cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells?, Experimental Hematology, vol.33, issue.7, pp.738-784, 2005.
DOI : 10.1016/j.exphem.2005.03.002

L. Ricci-vitiani, D. Lombardi, and E. Pilozzi, Identification and expansion of human colon-cancer-initiating cells, Nature, vol.37, issue.7123, pp.111-116, 2007.
DOI : 10.1038/nature05384

S. Bapat, Evolution of cancer stem cells, Seminars in Cancer Biology, vol.17, issue.3, pp.204-217, 2007.
DOI : 10.1016/j.semcancer.2006.05.001

M. Lu, J. Mk, H. Levine, J. Onuchic, and E. Ben-jacob, MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination, Proceedings of the National Academy of Sciences, vol.110, issue.45, pp.18144-18153, 2013.
DOI : 10.1073/pnas.1318192110

J. Liu, A. Eischeid, and X. Chen, Col1A1 Production and Apoptotic Resistance in TGF-??1-Induced Epithelial-to-Mesenchymal Transition-Like Phenotype of 603B Cells, PLoS ONE, vol.135, issue.12, p.51371, 2012.
DOI : 10.1371/journal.pone.0051371.g006

A. Kaimori, J. Potter, and J. Kaimori, Transforming Growth Factor-beta1 Induces an Epithelial-to-Mesenchymal Transition State in Mouse Hepatocytes in Vitro, Journal of Biological Chemistry, vol.282, issue.30, pp.22089-101, 2007.
DOI : 10.1074/jbc.M700998200

C. Cicchini, D. Filippini, and S. Coen, Snail controls differentiation of hepatocytes by repressing HNF4?? expression, Journal of Cellular Physiology, vol.98, issue.1, pp.230-238, 2006.
DOI : 10.1002/jcp.20730

D. Franco, J. Mainez, and S. Vega, Snail1 suppresses TGF-??-induced apoptosis and is sufficient to trigger EMT in hepatocytes, Journal of Cell Science, vol.123, issue.20, pp.3467-77, 2010.
DOI : 10.1242/jcs.068692

F. Valdes, A. Alvarez, and A. Locascio, The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes, Mol Cancer Res: MCR, vol.1, pp.68-78, 2002.

C. Cicchini, I. Laudadio, and F. Citarella, TGF??-induced EMT requires focal adhesion kinase (FAK) signaling, Experimental Cell Research, vol.314, issue.1, pp.143-52, 2008.
DOI : 10.1016/j.yexcr.2007.09.005

P. Godoy, J. Hengstler, and I. Ilkavets, Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor ??-induced apoptosis, Hepatology, vol.41, issue.6, pp.2031-2074, 2009.
DOI : 10.1002/hep.22880

A. Chu, R. Diaz, and J. Hui, Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis, Hepatology, vol.44, issue.Suppl 1, pp.1685-95, 2011.
DOI : 10.1002/hep.24206

A. Omenetti, A. Porrello, and Y. Jung, Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans, Journal of Clinical Investigation, vol.118, pp.3331-3373, 2008.
DOI : 10.1172/JCI35875DS1

C. Kordes, I. Sawitza, and A. Muller-marbach, CD133+ hepatic stellate cells are progenitor cells, Biochemical and Biophysical Research Communications, vol.352, issue.2, pp.410-417, 2007.
DOI : 10.1016/j.bbrc.2006.11.029

URL : http://doi.org/10.1016/j.bbrc.2006.11.029

G. Michelotti, G. Xie, and M. Swiderska, Smoothened is a master regulator of adult liver repair, Journal of Clinical Investigation, vol.123, pp.2380-94, 2013.
DOI : 10.1172/JCI66904DS1

S. Choi, A. Omenetti, and R. Witek, Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis, AJP: Gastrointestinal and Liver Physiology, vol.297, issue.6, pp.1093-106, 2009.
DOI : 10.1152/ajpgi.00292.2009

L. Yang, Y. Jung, and A. Omenetti, Fate-Mapping Evidence That Hepatic Stellate Cells Are Epithelial Progenitors in Adult Mouse Livers, Stem Cells, vol.45, issue.8, pp.2104-2117, 2008.
DOI : 10.1634/stemcells.2008-0115

A. Conigliaro, L. Amicone, and V. Costa, Evidence for a common progenitor of epithelial and mesenchymal components of the liver, Cell Death and Differentiation, vol.58, issue.8, pp.1116-1139, 2013.
DOI : 10.1242/jcs.019315

URL : https://hal.archives-ouvertes.fr/pasteur-01053504

M. Zeisberg, C. Yang, and M. Martino, Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition, Journal of Biological Chemistry, vol.282, issue.32, pp.23337-23384, 2007.
DOI : 10.1074/jbc.M700194200

K. Taura, K. Miura, and K. Iwaisako, Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice, Hepatology, vol.48, issue.3, pp.1027-1063, 2010.
DOI : 10.1002/hep.23368

L. Amicone, F. Spagnoli, and G. Spath, Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes, The EMBO Journal, vol.16, issue.3, pp.495-503, 1997.
DOI : 10.1093/emboj/16.3.495

N. Wang, M. Finegold, and A. Bradley, Impaired energy homeostasis in C/EBP alpha knockout mice, Science, vol.269, issue.5227, pp.1108-1120, 1995.
DOI : 10.1126/science.7652557

F. Parviz, C. Matullo, and W. Garrison, Hepatocyte nuclear factor 4?? controls the development of a hepatic epithelium and liver morphogenesis, Nature Genetics, vol.34, issue.3, pp.292-298, 2003.
DOI : 10.1038/ng1175

M. Battle, G. Konopka, and F. Parviz, Hepatocyte nuclear factor 4?? orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver, Proceedings of the National Academy of Sciences, vol.103, issue.22, pp.8419-8443, 2006.
DOI : 10.1073/pnas.0600246103

G. Hayhurst, Y. Lee, G. Lambert, J. Ward, and F. Gonzalez, Hepatocyte Nuclear Factor 4?? (Nuclear Receptor 2A1) Is Essential for Maintenance of Hepatic Gene Expression and Lipid Homeostasis, Molecular and Cellular Biology, vol.21, issue.4, pp.1393-403, 2001.
DOI : 10.1128/MCB.21.4.1393-1403.2001

A. Watt, W. Garrison, and S. Duncan, HNF4: A central regulator of hepatocyte differentiation and function, Hepatology, vol.20, issue.6, pp.1249-53, 2003.
DOI : 10.1053/jhep.2003.50273

C. Walesky, S. Gunewardena, and E. Terwilliger, Hepatocyte-specific deletion of hepatocyte nuclear factor-4?? in adult mice results in increased hepatocyte proliferation, AJP: Gastrointestinal and Liver Physiology, vol.304, issue.1, pp.26-37, 2013.
DOI : 10.1152/ajpgi.00064.2012

D. Odom, N. Zizlsperger, and D. Gordon, Control of Pancreas and Liver Gene Expression by HNF Transcription Factors, Science, vol.303, issue.5662, pp.1378-81, 2004.
DOI : 10.1126/science.1089769

F. Spagnoli, C. Cicchini, M. Tripodi, and M. Weiss, Inhibition of MMH (Met murine hepatocyte) cell differentiation by TGF(beta) is abrogated by pre-treatment with the heritable differentiation effector FGF1, J Cell Sci, vol.20, issue.20, pp.3639-3686, 2000.

A. Miyoshi, Y. Kitajima, and S. Kido, Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma, British Journal of Cancer, vol.37
DOI : 10.1038/sj.bjc.6602266

T. Osada, M. Sakamoto, and Y. Ino, E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma, Hepatology, vol.24, issue.6, pp.1460-1467, 1996.
DOI : 10.1002/hep.510240627

N. Lazarevich, O. Cheremnova, and E. Varga, Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors, Hepatology, vol.968, issue.4, pp.1038-1085, 2004.
DOI : 10.1002/hep.20155

G. Spath and M. Weiss, Hepatocyte Nuclear Factor 4 Provokes Expression of Epithelial Marker Genes, Acting As a Morphogen in Dedifferentiated Hepatoma Cells, The Journal of Cell Biology, vol.16, issue.4, pp.935-981, 1998.
DOI : 10.1073/pnas.89.19.9069

H. Chiba, T. Gotoh, and T. Kojima, Hepatocyte nuclear factor (HNF)-4?? triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Experimental Cell Research, vol.286, issue.2, pp.288-97, 2003.
DOI : 10.1016/S0014-4827(03)00116-2

S. Sekiya and A. Suzuki, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature, vol.32, issue.7356, pp.390-393, 2011.
DOI : 10.1038/nature10263

L. Santangelo, A. Marchetti, and C. Cicchini, The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4??, Hepatology, vol.51, issue.6, pp.2063-74, 2011.
DOI : 10.1002/hep.24280

URL : https://hal.archives-ouvertes.fr/pasteur-00980177

S. Choi and A. Diehl, Epithelial-to-mesenchymal transitions in the liver, Hepatology, vol.135, issue.Suppl 1, pp.2007-2020, 2009.
DOI : 10.1002/hep.23196

L. Pelletier, S. Rebouissou, D. Vignjevic, P. Bioulac-sage, and J. Zucman-rossi, HNF1?? inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines, BMC Cancer, vol.5, issue.2, p.427, 2011.
DOI : 10.4161/cc.5.2.2341

URL : https://hal.archives-ouvertes.fr/inserm-00636820

P. Huang, Z. He, and S. Ji, Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors, Nature, vol.39, issue.7356, pp.386-395, 2011.
DOI : 10.1038/nature10116

V. Battula, K. Evans, and B. Hollier, Epithelial-Mesenchymal Transition-Derived Cells Exhibit Multilineage Differentiation Potential Similar to Mesenchymal Stem Cells, STEM CELLS, vol.91, issue.suppl 1, pp.1435-1480, 2010.
DOI : 10.1002/stem.467

A. Morel, M. Lievre, and C. Thomas, Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition, PLoS ONE, vol.133, issue.8, p.2888, 2008.
DOI : 10.1371/journal.pone.0002888.g005

N. Lazarevich, D. Shavochkina, and D. Fleishman, Deregulation of hepatocyte nuclear factor 4 (HNF4)as a marker of epithelial tumors progression, Exp Oncol, vol.32, pp.167-71

A. Cozzolino, T. Alonzi, and L. Santangelo, TGF?? overrides HNF4?? tumor suppressing activity through GSK3?? inactivation: implication for hepatocellular carcinoma gene therapy, Journal of Hepatology, vol.58, issue.1, pp.65-72, 2013.
DOI : 10.1016/j.jhep.2012.08.023