B. Al-lazikani, Standard conformations for the canonical structures of immunoglobulins, Journal of Molecular Biology, vol.273, issue.4, pp.927-948, 1997.
DOI : 10.1006/jmbi.1997.1354

J. C. Almagro, Antibody modeling assessment, Proteins: Structure, Function, and Bioinformatics, vol.71, issue.Suppl 9, pp.3050-3066, 2011.
DOI : 10.1002/prot.23130

R. E. Bruccoleri and M. Karplus, Prediction of the folding of short polypeptide segments by uniform conformational sampling, Biopolymers, vol.24, issue.1, pp.137-168, 1987.
DOI : 10.1002/bip.360260114

A. Chailyan, The association of heavy and light chain variable domains in antibodies: implications for antigen specificity, FEBS Journal, vol.346, issue.16, pp.2858-2866, 2011.
DOI : 10.1111/j.1742-4658.2011.08207.x

A. Chailyan, A database of immunoglobulins with integrated tools: DIGIT, Nucleic Acids Research, vol.40, issue.D1, pp.1230-1234, 2012.
DOI : 10.1093/nar/gkr806

Y. Choi and C. M. Deane, FREAD revisited: Accurate loop structure prediction using a database search algorithm, Proteins: Structure, Function, and Bioinformatics, vol.57, pp.1431-1440, 2010.
DOI : 10.1002/prot.22658

Y. Choi and C. M. Deane, Predicting antibody complementarity determining region structures without classification, Molecular BioSystems, vol.52, issue.1, pp.3327-3334, 2011.
DOI : 10.1128/mBio.00345-10

C. Chothia and A. M. Lesk, Canonical structures for the hypervariable regions of immunoglobulins, Journal of Molecular Biology, vol.196, issue.4, pp.901-917, 1987.
DOI : 10.1016/0022-2836(87)90412-8

S. Ewert, Biophysical Properties of Human Antibody Variable Domains, Journal of Molecular Biology, vol.325, issue.3, pp.531-553, 2003.
DOI : 10.1016/S0022-2836(02)01237-8

F. Ghiotto, Mutation pattern of paired immunoglobulin heavy and light variable domains in chronic lymphocytic leukemia B cells, Mol. Med, vol.17, pp.1188-1195, 2011.

T. Hamelryck and B. Manderick, PDB file parser and structure class implemented in Python, Bioinformatics, vol.19, issue.17, pp.2308-2310, 2003.
DOI : 10.1093/bioinformatics/btg299

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks., Proc. Natl Acad. Sci. USA, pp.10915-10919, 1992.
DOI : 10.1073/pnas.89.22.10915

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/pdf

S. Kelm, MEDELLER: homology-based coordinate generation for membrane proteins, Bioinformatics, vol.26, issue.22, pp.2833-2840, 2010.
DOI : 10.1093/bioinformatics/btq554

D. Kuroda, Structural classification of CDR-H3 revisited: A lesson in antibody modeling, Proteins: Structure, Function, and Bioinformatics, vol.23, issue.Database issue, pp.608-620, 2008.
DOI : 10.1002/prot.22087

S. Lee and T. L. Blundell, Ulla: a program for calculating environment-specific amino acid substitution tables, Bioinformatics, vol.25, issue.15, pp.1976-1977, 2009.
DOI : 10.1093/bioinformatics/btp300

M. P. Lefranc, IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Developmental & Comparative Immunology, vol.27, issue.1, pp.55-77, 2003.
DOI : 10.1016/S0145-305X(02)00039-3

M. P. Lefranc, IMGT(R), the international ImMunoGeneTics information system(R), Nucleic Acids Research, vol.37, issue.Database, pp.1006-1012, 2009.
DOI : 10.1093/nar/gkn838

URL : https://hal.archives-ouvertes.fr/hal-00357158

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, issue.13, pp.1658-1659, 2006.
DOI : 10.1093/bioinformatics/btl158

C. Mandal, ABGEN: A Knowledge-Based Automated Approach for Antibody Structure Modeling, Nature Biotechnology, vol.12, issue.3, pp.323-328, 1996.
DOI : 10.1038/335564a0

P. Marcatili, PIGS: automatic prediction of antibody structures, Bioinformatics, vol.24, issue.17, pp.1953-1954, 2008.
DOI : 10.1093/bioinformatics/btn341

I. S. Mian, Structure, function and properties of antibody binding sites, Journal of Molecular Biology, vol.217, issue.1, pp.133-151, 1991.
DOI : 10.1016/0022-2836(91)90617-F

V. Morea, Conformations of the third hypervariable region in the VH domain of immunoglobulins, Journal of Molecular Biology, vol.275, issue.2, pp.269-294, 1998.
DOI : 10.1006/jmbi.1997.1442

P. P. Olimpieri, Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server, Bioinformatics, vol.29, issue.18, pp.2285-2291, 2013.
DOI : 10.1093/bioinformatics/btt369

P. W. Rose, The RCSB Protein Data Bank: new resources for research and education, Nucleic Acids Research, vol.41, issue.D1, pp.475-482, 2013.
DOI : 10.1093/nar/gks1200

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

S. Choi, S. H. Tappert, and C. C. , A Survey of Binary Similarity and Distance Measures, J. Syst. Cybern. Inf, vol.8, issue.6, 2010.

H. Shirai, Structural classification of antibody CDR-H3., Seibutsu Butsuri, vol.38, issue.1, pp.1-8, 1996.
DOI : 10.2142/biophys.38.21

A. Sircar, RosettaAntibody: antibody variable region homology modeling server, Nucleic Acids Research, vol.37, issue.Web Server, pp.474-479, 2009.
DOI : 10.1093/nar/gkp387

URL : http://doi.org/10.1093/nar/gkp387

A. Sivasubramanian, regions and application to antibody-antigen docking, Proteins: Structure, Function, and Bioinformatics, vol.47, issue.Part 2, pp.497-514, 2009.
DOI : 10.1002/prot.22309

M. X. Sliwkowski and I. Mellman, Antibody Therapeutics in Cancer, Science, vol.341, issue.6151, pp.1192-1198, 2013.
DOI : 10.1126/science.1241145

A. Tramontano, Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins, Journal of Molecular Biology, vol.215, issue.1, pp.175-182, 1990.
DOI : 10.1016/S0022-2836(05)80102-0

C. H. Tung, Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database, Genome Biology, vol.8, issue.3, p.31, 2007.
DOI : 10.1186/gb-2007-8-3-r31

P. Turan, On an extremal problem in graph theory, Matematikai es Fizikai Lapok, p.16, 1941.

A. C. Wallace, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, "Protein Engineering, Design and Selection", vol.8, issue.2, pp.127-134, 1995.
DOI : 10.1093/protein/8.2.127

G. Wang, R. L. Dunbrack, and . Jr, PISCES: a protein sequence culling server, Bioinformatics, vol.19, issue.12, pp.1589-1591, 2003.
DOI : 10.1093/bioinformatics/btg224

J. Xu and Y. Zhang, How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, vol.26, issue.7, pp.889-895, 2010.
DOI : 10.1093/bioinformatics/btq066

Y. Zhang and J. Skolnick, Scoring function for automated assessment of protein structure template quality, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.4, pp.702-710, 2004.
DOI : 10.1002/prot.20264

S. Zibellini, Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma, Haematologica, vol.95, issue.10, pp.1792-1796, 2010.
DOI : 10.3324/haematol.2010.025437