I. Shindyalov, N. Kolchanov, and C. Sander, Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?, "Protein Engineering, Design and Selection", vol.7, issue.3, pp.349-358, 1994.
DOI : 10.1093/protein/7.3.349

U. Gobel, C. Sander, R. Schneider, and A. Valencia, Correlated mutations and residue contacts in proteins, Proteins: Structure, Function, and Genetics, vol.262, issue.4, pp.309-317, 1994.
DOI : 10.1002/prot.340180402

O. Olmea and A. Valencia, Improving contact predictions by the combination of correlated mutations and other sources of sequence information, Folding and Design, vol.2, issue.3, pp.25-32, 1997.
DOI : 10.1016/S1359-0278(97)00060-6

D. De-juan, F. Pazos, and A. Valencia, Emerging methods in protein co-evolution, Nature Reviews Genetics, vol.485, issue.4, pp.249-261, 2013.
DOI : 10.1371/journal.pgen.1000570

D. Marks, T. Hopf, and C. Sander, Protein structure prediction from sequence variation, Nature Biotechnology, vol.487, issue.11, pp.1072-1080, 2012.
DOI : 10.1093/nar/gkr981

D. Jones, D. Buchan, D. Cozzetto, and M. Pontil, PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, issue.2, pp.184-190, 2012.
DOI : 10.1093/bioinformatics/btr638

J. Sulkowska, F. Morcos, M. Weigt, T. Hwa, and J. Onuchic, Genomics-aided structure prediction, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10340-10345, 2012.
DOI : 10.1073/pnas.1207864109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387073

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1293-1301, 2011.
DOI : 10.1073/pnas.1111471108

D. Marks, L. Colwell, R. Sheridan, T. Hopf, A. Pagnani et al., Protein 3D Structure Computed from Evolutionary Sequence Variation, PLoS ONE, vol.437, issue.12, p.28766, 2011.
DOI : 10.1371/journal.pone.0028766.s022

L. Burger and E. Van-nimwegen, Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments, PLoS Computational Biology, vol.14, issue.14, p.1000633, 2010.
DOI : 10.1371/journal.pcbi.1000633.s012

M. Weigt, R. White, H. Szurmant, J. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, issue.1, pp.67-72, 2009.
DOI : 10.1073/pnas.0805923106

P. Fariselli and R. Casadio, A neural network based predictor of residue contacts in proteins, Protein Engineering Design and Selection, vol.12, issue.1, pp.15-21, 1999.
DOI : 10.1093/protein/12.1.15

A. Vullo, I. Walsh, and G. Pollastri, A two-stage approach for improved prediction of residue contact maps, BMC Bioinformatics, vol.7, issue.1, pp.180-16573808, 2006.
DOI : 10.1186/1471-2105-7-180

P. Chen, D. Huang, X. Zhao, and X. Li, Predicting contact map using Radial Basis Function Neural Network with Conformational Energy Function, International Journal of Bioinformatics Research and Applications, vol.4, issue.2, pp.123-136, 2008.
DOI : 10.1504/IJBRA.2008.018340

G. Shackelford and K. Karplus, Contact prediction using mutual information and neural nets, Proteins: Structure, Function, and Bioinformatics, vol.3, issue.S8, pp.159-164, 2007.
DOI : 10.1002/prot.21791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Lena, P. Nagata, K. Baldi, and P. , Deep architectures for protein contact map prediction, Bioinformatics, vol.28, issue.19, pp.2449-2457, 2012.
DOI : 10.1093/bioinformatics/bts475

B. Xue, E. Faraggi, and Y. Zhou, Predicting residue-residue contact maps by a two-layer, integrated neural-network method, Proteins: Structure, Function, and Bioinformatics, vol.69, issue.S8, pp.176-183, 2009.
DOI : 10.1002/prot.22329

P. Fariselli, O. Olmea, A. Valencia, and R. Casadio, Prediction of contact maps with neural networks and correlated mutations, Protein Engineering Design and Selection, vol.14, issue.11, pp.835-843, 2001.
DOI : 10.1093/protein/14.11.835

S. Wu and Y. Zhang, A comprehensive assessment of sequence-based and template-based methods for protein contact prediction, Bioinformatics, vol.24, issue.7, pp.924-931, 2008.
DOI : 10.1093/bioinformatics/btn069

J. Cheng and P. Baldi, Improved residue contact prediction using support vector machines and a large feature set, BMC Bioinformatics, vol.8, issue.1, pp.113-17407573, 2007.
DOI : 10.1186/1471-2105-8-113

P. Chen, K. Han, X. Li, and D. Huang, Predicting Key Long-Range Interaction Sites by B-Factors, Protein & Peptide Letters, vol.15, issue.5, pp.478-483, 2008.
DOI : 10.2174/092986608784567573

P. Bjorkholm, P. Daniluk, A. Kryshtafovych, K. Fidelis, R. Andersson et al., Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts, Bioinformatics, vol.25, issue.10, pp.1264-1270, 2009.
DOI : 10.1093/bioinformatics/btp149

G. Pollastri and P. Baldi, Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners, Bioinformatics, vol.18, issue.Suppl 1, pp.62-70, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S62

K. Karplus and . Sam-t08, SAM-T08, HMM-based protein structure prediction, Nucleic Acids Research, vol.37, issue.Web Server, pp.492-497, 2009.
DOI : 10.1093/nar/gkp403

Z. Wang, J. Eickholt, and J. Cheng, MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8, Bioinformatics, vol.26, issue.7, pp.882-888, 2010.
DOI : 10.1093/bioinformatics/btq058

Y. Li, Y. Fang, and J. Fang, Predicting residue-residue contacts using random forest models, Bioinformatics, vol.27, issue.24, pp.3379-3384, 2011.
DOI : 10.1093/bioinformatics/btr579

M. Stout, J. Bacardit, J. Dirst, R. Smith, and N. Krasnogor, Prediction of topological contacts in proteins using learning classifier systems, Soft Computing, vol.2, issue.3, pp.245-258, 2009.
DOI : 10.1007/s00500-008-0318-8

A. Lesk, CASP2: report on ab initio predictions, Proteins, issue.1, pp.151-166, 1997.

O. Grana, D. Baker, R. Maccallum, J. Meiler, M. Punta et al., CASP6 assessment of contact prediction, Proteins: Structure, Function, and Bioinformatics, vol.14, issue.S7, pp.214-224, 2005.
DOI : 10.1002/prot.20739

J. Izarzugaza, O. Grana, M. Tress, A. Valencia, and N. Clarke, Assessment of intramolecular contact predictions for CASP7, Proteins: Structure, Function, and Bioinformatics, vol.21, issue.S8, pp.152-158, 2007.
DOI : 10.1002/prot.21637

I. Ezkurdia, O. Grana, J. Izarzugaza, and M. Tress, Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8, Proteins: Structure, Function, and Bioinformatics, vol.10, issue.Suppl 9, pp.196-209, 2009.
DOI : 10.1002/prot.22554

B. Monastyrskyy, K. Fidelis, A. Tramontano, and A. Kryshtafovych, Evaluation of residue-residue contact predictions in CASP9, Proteins: Structure, Function, and Bioinformatics, vol.79, issue.(Suppl 10), pp.119-125, 2011.
DOI : 10.1002/prot.23160

A. Kryshtafovych, B. Monastyrskyy, and K. Fidelis, CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL, THIS ISSUE), p.2013
DOI : 10.1002/prot.24399

T. Taylor, C. Tai, H. Bai, A. Kryshtafovych, G. Montelione et al., Definition and classification of evaluation units for CASP10, Proteins: Structure, Function, and Bioinformatics, vol.25, issue.13
DOI : 10.1002/prot.24434

P. Enkhbayar, M. Kamiya, M. Osaki, T. Matsumoto, and N. Matsushima, Structural principles of leucine-rich repeat (LRR) proteins, Proteins: Structure, Function, and Bioinformatics, vol.539, issue.3, pp.394-403, 2004.
DOI : 10.1002/prot.10605

B. Monastyrskyy, K. Fidelis, J. Moult, A. Tramontano, and A. Kryshtafovych, Evaluation of disorder predictions in CASP9, Proteins: Structure, Function, and Bioinformatics, vol.10, issue.(Suppl 10), pp.107-118, 2011.
DOI : 10.1002/prot.23161

R. Bunescu, R. Ge, K. R. Marcotte, E. Mooney, R. Ramani et al., Comparative experiments on learning information extractors for proteins and their interactions, Artificial Intelligence in Medicine, vol.33, issue.2, pp.139-155, 2004.
DOI : 10.1016/j.artmed.2004.07.016

S. Kok and P. Domingos, Learning the structure of Markov logic networks, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.441-448, 2005.
DOI : 10.1145/1102351.1102407

H. He and E. Garcia, Learning from Imbalanced Data, Ieee T Knowl Data En, vol.21, issue.9, pp.1263-1284, 2009.

M. Goadrich, L. Oliphant, and J. Shavlik, Learning ensembles of first-order clauses for recallprecision curves: A case study in biomedical information extraction, pp.421-456, 2004.

T. Fawcett and P. Flach, A Response to Webb and Ting?s On the Application of ROC Analysis to Predict Classification Performance Under Varying Class Distributions, Machine Learning, vol.58, issue.1, pp.33-38, 2005.
DOI : 10.1007/s10994-005-5256-4

J. Davis and M. Goadrich, The relationship between Precision-Recall and ROC curves, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.233-240, 2006.
DOI : 10.1145/1143844.1143874

M. Levandowsky and D. Winter, Distance between Sets, Nature, vol.234, issue.5323, 1971.

S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389