N. M. Van-straalen, Assessment of soil contamination?A functional perspective, Biodegradation, vol.13, issue.1, pp.41-52, 2002.
DOI : 10.1023/A:1016398018140

D. White and A. Sinclair, Loss of microbial diversity in soils is coincident with reductions in some specialized functions, Environ. Microbiol, vol.2014, issue.16, pp.2408-2420

B. Berg, C. Mcclaugherty, A. Virzo-de-santo, M. B. Johansson, and G. Ekbohm, Decomposition of litter and soil organic matter?Can be distinguish a mechanism for soil organic matter buildup? Scand, J. For. Res, vol.10, pp.108-119, 1995.

L. Vesterdal, M. Dalsgaard, C. Felby, K. Raulund-rasmussen, and B. Jørgensen, Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands Ecological significance of the biological activity in soil, For. Ecol. Manag. In Soil Biochemistry; Bollag, J.-M, vol.77, issue.6, pp.1-10, 1990.

M. G. Van-der-heijden, R. D. Bardgett, and N. M. Van-straalen, The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems Reduction of decomposition rates of Scots pine needle litter due to heavy-metal pollution. Water Air Soil Pollut, CrossRef] 8. Van Gestel, C.A.M. Soil ecotoxicology: State of the art and future directions, pp.296-310, 1991.

M. M. Ardestani, N. M. Van-straalen, and C. A. Van-gestel, Uptake and elimination kinetics of metals in soil invertebrates: A review, Environmental Pollution, vol.193, pp.277-295, 2014.
DOI : 10.1016/j.envpol.2014.06.026

H. Babich and G. Stotzky, Heavy metal toxicity to microbe-mediated ecologic processes: A review and potential application to regulatory policies, Environmental Research, vol.36, issue.1, pp.111-137, 1985.
DOI : 10.1016/0013-9351(85)90011-8

K. E. Giller, E. Witter, and S. P. Mcgrath, Heavy metals and soil microbes, Soil Biology and Biochemistry, vol.41, issue.10, pp.2031-2037, 2009.
DOI : 10.1016/j.soilbio.2009.04.026

S. Botton, M. Van-heusden, J. R. Parsons, H. Smidt, and N. Van-straalen, Resilience of Microbial Systems Towards Disturbances, Critical Reviews in Microbiology, vol.120, issue.2, pp.101-112, 2006.
DOI : 10.1086/338996

S. D. Allison and J. B. Martiny, Resistance, resilience, and redundancy in microbial communities, Proc. Natl. Acad. Sci. USA, pp.11512-11519, 2008.
DOI : 10.1073/pnas.0801925105

B. S. Griffiths and L. Philippot, Insights into the resistance and resilience of the soil microbial community, FEMS Microbiology Reviews, vol.37, issue.2, pp.112-129
DOI : 10.1111/j.1574-6976.2012.00343.x

H. Deng, A review of diversity-stability relationship of soil microbial community: What do we not know?, Journal of Environmental Sciences, vol.24, issue.6, pp.1027-1035
DOI : 10.1016/S1001-0742(11)60846-2

A. Shade, H. Peter, S. D. Allison, D. Baho, M. Berga et al., Fundamentals of Microbial Community Resistance and Resilience, Frontiers in Microbiology, vol.3, issue.3, p.417
DOI : 10.3389/fmicb.2012.00417

M. J. Mclaughlin and E. Smolders, Background zinc concentrations in soil affect the zinc sensitivity of soil microbial processes?A rationale for a metalloregion approach to risk assessments, Environ. Toxicol. Chem, vol.20, pp.2639-2643, 2001.

H. Azarbad, M. Niklí-nska, K. Nikiel, N. M. Van-straalen, and W. F. Röling, Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?, Biology and Fertility of Soils, vol.19, issue.7, pp.879-890, 2015.
DOI : 10.1007/s00374-015-1033-0

K. E. Giller, E. Witter, and S. P. Mcgrath, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review, Soil Biology and Biochemistry, vol.30, issue.10-11, pp.1389-1414, 1998.
DOI : 10.1016/S0038-0717(97)00270-8

T. Kunito, K. Senoo, K. Saeki, H. Oyaizu, and S. Matsumoto, Usefulness of the Sensitivity???Resistance Index to Estimate the Toxicity of Copper on Bacteria in Copper-Contaminated Soils, Ecotoxicology and Environmental Safety, vol.44, issue.2, pp.182-189, 1999.
DOI : 10.1006/eesa.1999.1821

H. Azarbad, M. Niklí-nska, C. A. Van-gestel, N. M. Van-straalen, W. F. Röling et al., Microbial community structure and functioning along metal pollution gradients, Environmental Toxicology and Chemistry, vol.271, issue.9, pp.1992-2002, 2013.
DOI : 10.1002/etc.2269

R. P. Ryan, D. J. Ryan, and D. N. Dowling, Multiple Metal Resistant Transferable Phenotypes in Bacteria as Indicators of Soil Contamination with Heavy Metals (6 pp), Journal of Soils and Sediments, vol.5, issue.2, pp.95-100, 2005.
DOI : 10.1065/jss2004.10.120

L. Cai, G. Liu, C. Rensing, and G. Wang, Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils, BMC Microbiology, vol.9, issue.1, 2009.
DOI : 10.1186/1471-2180-9-4

A. O. Summers, J. Wireman, M. J. Vimy, F. L. Lorscheider, B. Marshall et al., Mercury released from dental "silver" fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates., Antimicrobial Agents and Chemotherapy, vol.37, issue.4, pp.825-834, 1993.
DOI : 10.1128/AAC.37.4.825

A. Ghosh, A. Singh, P. W. Ramteke, and V. P. Singh, Characterization of Large Plasmids Encoding Resistance to Toxic Heavy Metals in Salmonella abortus equi, Biochemical and Biophysical Research Communications, vol.272, issue.1, pp.6-11, 2000.
DOI : 10.1006/bbrc.2000.2727

B. H. Olson and I. Thornton, The resistance patterns to metals of bacterial populations in contaminated land, Journal of Soil Science, vol.127, issue.2, pp.271-277, 1982.
DOI : 10.1111/j.1365-2389.1982.tb01765.x

C. L. Hemme, Y. Deng, T. J. Gentry, M. W. Fields, L. Wu et al., Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community, The ISME Journal, vol.62, issue.5, pp.660-672, 2010.
DOI : 10.1371/journal.pbio.0050016

S. Kang, J. D. Van-nostrand, H. L. Gough, Z. He, T. C. Hazen et al., Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments, FEMS Microbiology Ecology, vol.86, issue.2, pp.200-214, 2013.
DOI : 10.1111/1574-6941.12152

F. Hendrickx, J. P. Maelfait, and L. Lens, Effect of metal stress on life history divergence and quantitative genetic architecture in a wolf spider, Journal of Evolutionary Biology, vol.354, issue.0, pp.183-193, 2008.
DOI : 10.1006/ecss.1996.0057

N. M. Van-straalen, T. B. Burghouts, M. J. Doornhof, G. M. Groot, M. P. Jansens et al., Efficiency of Lead and Cadmium Excretion in Populations of Orchesella cincta (Collembola) from Various Contaminated Forest Soils, The Journal of Applied Ecology, vol.24, issue.3, pp.953-968, 1987.
DOI : 10.2307/2403992

J. Mertens, S. A. Wakelin, K. Broos, M. J. Mclaughlin, and E. Smolders, Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils, Environmental Toxicology and Chemistry, vol.34, issue.1, pp.27-37, 2010.
DOI : 10.1002/etc.16

J. Mertens, S. Ruyters, D. Springael, and E. Smolders, Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils, Soil Biology and Biochemistry, vol.39, issue.7, pp.1828-1831, 2007.
DOI : 10.1016/j.soilbio.2007.01.032

M. Tobor-kap?on, J. Bloem, P. F. Römkens, and P. C. De-ruiter, Functional Stability of Microbial Communities in Contaminated Soils Near a Zinc Smelter (Budel, The Netherlands), Ecotoxicology, vol.19, issue.8, pp.187-197, 2006.
DOI : 10.1007/s10646-005-0050-4

L. Philippot, M. Cregut, D. Chèneby, M. Bressan, S. Dequiet et al., Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress, FEMS Microbiology Letters, vol.285, issue.1, pp.51-57, 2008.
DOI : 10.1111/j.1574-6968.2008.01210.x

M. A. Tobor-kap?on, J. Bloem, P. F. Römkens, and P. C. De-ruiter, Functional stability of microbial communities in contaminated soils, Oikos, vol.19, issue.1, pp.119-129, 2005.
DOI : 10.1111/j.0030-1299.2005.13512.x

A. K. Müller, L. D. Rasmussen, and S. J. Sørensen, Adaptation of the bacterial community to mercury contamination, FEMS Microbiology Letters, vol.204, issue.1, pp.49-53, 2001.
DOI : 10.1016/S0378-1097(01)00376-7

S. A. Kools, M. P. Berg, M. E. Boivin, F. J. Kuenen, A. G. Van-der-wurff et al., Stress responses investigated; application of zinc and heat to Terrestrial Model Ecosystems from heavy metal polluted grassland, Science of The Total Environment, vol.406, issue.3, pp.462-468, 2008.
DOI : 10.1016/j.scitotenv.2008.06.057

D. Tilman, Resource Competition and Community Structure, p.296, 1982.

S. J. Mcnaughton, Biodiversity and stability of grazing ecosystems, Biodiversity and Ecosystem Function, pp.361-383, 1994.

B. Zhang, H. Wang, S. Yao, and L. Bi, Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana, Soil Biology and Biochemistry, vol.57, pp.556-567, 2013.
DOI : 10.1016/j.soilbio.2012.07.024

H. Blanck, S. A. Wängberg, and S. Molander, Pollution-induced community tolerance?A new ecotoxicological tool In Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals

D. R. Nemergut, S. K. Schmidt, T. Fukami, S. P. Neill, T. M. Bilinski et al., Patterns and Processes of Microbial Community Assembly, Microbiology and Molecular Biology Reviews, vol.77, issue.3, pp.342-356, 2013.
DOI : 10.1128/MMBR.00051-12

M. Pereira-e-silva, A. V. Semenov, H. Schmitt, J. D. Van-elsas, and J. Salles, Microbemediated processes as indicators to establish the normal operating range of soil functioning, Soil Biol. Biochem, vol.57, pp.955-1002, 2013.

K. K. Brandt, A. Amézquita, T. Backhaus, A. Boxall, A. Coors et al., Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms, Environment International, vol.85, pp.189-205, 2015.
DOI : 10.1016/j.envint.2015.09.013

A. M. Chaudri, S. P. Mcgrath, P. Gibbs, B. C. Chambers, C. Carlton-smith et al., Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments with sewage sludge cake, metal-amended liquid sludge or metal salts: Effects of zinc, copper and cadmium, Soil Biology and Biochemistry, vol.40, issue.7, pp.1670-1680, 2008.
DOI : 10.1016/j.soilbio.2008.01.026

J. Mertens, D. Springael, I. De-troyer, K. Cheyns, and P. Wattiau, Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil, Environmental Microbiology, vol.82, issue.12, pp.2170-2178, 2006.
DOI : 10.1046/j.1351-0754.2003.0558.x

I. Berdicevsky, L. Duek, D. Merzbach, and S. Yannai, Susceptibility of different yeast species to environmental toxic metals, Environmental Pollution, vol.80, issue.1, pp.41-44, 1993.
DOI : 10.1016/0269-7491(93)90007-B

P. Romandini, L. Tallandini, M. Beltramini, B. Salvato, and M. Manzano, Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains, Comp. Biochem. Physiol, vol.103, pp.255-262, 1992.

A. Oliveira, M. E. Pampulha, M. M. Neto, and A. C. Almeida, Mercury tolerant diazotrophic bacteria in a long-term contaminated soil, Geoderma, vol.154, issue.3-4, pp.359-363, 2010.
DOI : 10.1016/j.geoderma.2009.11.008

C. S. Sheik, T. W. Mitchell, F. Z. Rizvi, Y. Rehman, M. Faisal et al., Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure, PLoS ONE, vol.9, issue.6, p.40059, 2012.
DOI : 10.1371/journal.pone.0040059.s002

X. Zhou, Z. He, Z. Liang, P. J. Stoffella, J. Fan et al., Long-Term Use of Copper-Containing Fungicide Affects Microbial Properties of Citrus Grove Soils, Soil Science Society of America Journal, vol.75, issue.3, pp.898-906, 2011.
DOI : 10.2136/sssaj2010.0321

J. Joynt, M. Bischoff, R. Turco, A. Konopka, and C. H. Nakatsu, Microbial Community Analysis of Soils Contaminated with Lead, Chromium and Petroleum Hydrocarbons, Microbial Ecology, vol.35, issue.2, pp.209-219, 2006.
DOI : 10.1007/s00248-005-0205-0

J. Zhou, Q. He, C. Hemme, A. Mukhopadhyay, K. Hillesland et al., How sulphate-reducing microorganisms cope with stress: lessons from systems biology, Nature Reviews Microbiology, vol.24, issue.6, pp.452-466, 2011.
DOI : 10.1038/nrmicro2575

A. J. Andersson, K. L. Yeakel, N. R. Bates, and S. J. De-putron, Partial offsets in ocean acidification from changing coral reef biogeochemistry, Nature Climate Change, vol.18, issue.1, pp.56-61, 2014.
DOI : 10.1038/nclimate2050

S. L. Pimm, The complexity and stability of ecosystems, Nature, vol.13, issue.5949, pp.321-326, 1984.
DOI : 10.1038/307321a0

V. Grimm and C. Wissel, Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion, Oecologia, vol.109, issue.3, pp.323-334, 1997.
DOI : 10.1007/s004420050090

D. Hodgson, J. L. Mcdonald, and D. J. Hosken, What do you mean, ???resilient????, Trends in Ecology & Evolution, vol.30, issue.9, pp.503-506, 2015.
DOI : 10.1016/j.tree.2015.06.010

G. Imfeld and S. Vuilleumier, Measuring the effects of pesticides on bacterial communities in soil: A critical review, European Journal of Soil Biology, vol.49, issue.49, pp.22-30
DOI : 10.1016/j.ejsobi.2011.11.010

N. M. Van-straalen and D. Roelofs, An Introduction to Ecological Genomics, p.299, 2006.
DOI : 10.1093/acprof:oso/9780199594689.001.0001

T. Penanen, A. Frostegård, H. Fritze, and E. Bååth, Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests, Appl. Environ. Microbiol, vol.62, pp.420-428, 1996.

E. Bååth, M. Díaz-ravina, A. Frostegård, and C. D. Campbell, Effect of metal-rich sludge amendments on the soil microbial community, Appl. Environ. Microbiol, vol.64, pp.238-245, 1998.

E. Bååth, A. Frostegård, M. Díaz-ravina, and A. Tunlid, Microbial community based measurements to estimate heavy metal effects in soil: The use of phospholipid fatty acid patterns and bacterial community tolerance, AMBIO, vol.27, pp.58-62, 1998.

J. J. Kelly, M. Haggblom, and R. L. Tate, Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities, Soil Biology and Biochemistry, vol.31, issue.10, pp.1467-1470, 1999.
DOI : 10.1016/S0038-0717(99)00060-7

E. Witter, P. Gong, and E. Bååth, A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications, Environmental Toxicology and Chemistry, vol.18, issue.8, pp.1983-1991, 2000.
DOI : 10.1002/etc.5620190805

J. Harris-hellal, T. Vallaeys, E. Garnier-zarli, and N. Bousserrrhine, Effects of mercury on soil microbial communities in tropical soils of French Guyana, Applied Soil Ecology, vol.41, issue.1, pp.59-68, 2009.
DOI : 10.1016/j.apsoil.2008.08.009

URL : https://hal.archives-ouvertes.fr/bioemco-00450721

M. Díaz-raviña and E. Bååth, Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels, Appl. Environ. Microbiol, vol.62, pp.2970-2972, 1996.

E. Bååth, M. Díaz-raviña, and L. Bakken, Microbial Biomass, Community Structure and Metal Tolerance of a Naturally Pb-Enriched Forest Soil, Microbial Ecology, vol.35, issue.4, pp.496-505, 2005.
DOI : 10.1007/s00248-005-0008-3

M. Go??-ebiewski, E. Deja-sikora, M. Cichosz, A. Tretyn, and B. Wrobel, 16S rDNA Pyrosequencing Analysis of Bacterial Community in Heavy Metals Polluted Soils, Microbial Ecology, vol.108, issue.S1, pp.635-647, 2014.
DOI : 10.1007/s00248-013-0344-7

J. Berg, K. K. Brandt, W. A. Soud, P. E. Holm, L. H. Hansen et al., Selection for Cu-Tolerant Bacterial Communities with Altered Composition, but Unaltered Richness, via Long-Term Cu Exposure, Applied and Environmental Microbiology, vol.78, issue.20, pp.7438-7446, 2012.
DOI : 10.1128/AEM.01071-12

K. K. Brandt, R. J. Frandsen, P. E. Holm, and O. Nybroe, Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper, Soil Biology and Biochemistry, vol.42, issue.5, pp.748-757, 2010.
DOI : 10.1016/j.soilbio.2010.01.008

C. Hong, Y. X. Si, Y. Xing, and Y. Li, Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas, Environmental Science and Pollution Research, vol.9, issue.436, pp.10788-10799, 2015.
DOI : 10.1007/s11356-015-4186-3

J. Li, H. W. Hu, Y. B. Ma, J. T. Wang, Y. R. Liu et al., Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils, Environmental Science and Pollution Research, vol.16, issue.14, pp.10496-10505, 2015.
DOI : 10.1007/s11356-015-4232-1

L. X. Chen, J. T. Li, Y. T. Chen, L. N. Huang, Z. S. Hua et al., Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings, Environmental Microbiology, vol.38, issue.73, pp.2431-2444, 2013.
DOI : 10.1111/1462-2920.12114

M. Chodak, M. Go??-ebiewski, J. Morawska-p?oskonka, and K. Kuduk, Diversity of microorganisms from forest soils differently polluted with heavy metals, Applied Soil Ecology, vol.64, pp.7-14, 2013.
DOI : 10.1016/j.apsoil.2012.11.004

D. Boer, T. Ta¸sta¸s, N. Braster, M. Temminghoff, E. J. Röling et al., The Influence of Long-Term Copper Contaminated Agricultural Soil at Different pH Levels on Microbial Communities and Springtail Transcriptional Regulation, Environmental Science & Technology, vol.46, issue.1, pp.60-68, 2012.
DOI : 10.1021/es2013598

G. Renella, M. Mench, L. Landi, and P. Nannipieri, Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils, Soil Biology and Biochemistry, vol.37, issue.1, pp.133-139, 2005.
DOI : 10.1016/j.soilbio.2004.06.015

J. Li, Y. M. Zheng, Y. R. Liu, Y. B. Ma, H. W. Hu et al., Initial Copper Stress Strengthens the Resistance of Soil Microorganisms to a Subsequent Copper Stress, Microbial Ecology, vol.7, issue.4, pp.931-941, 2014.
DOI : 10.1007/s00248-014-0391-8

A. Bourceret, A. Cébron, E. Tisserant, P. Poupin, P. Bauda et al., The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters, Microbial Ecology, vol.103, issue.3, pp.711-724, 2015.
DOI : 10.1007/s00248-015-0682-8

L. Epelde, J. M. Becerril, G. A. Kowalchuk, Y. Deng, J. Zhou et al., Impact of Metal Pollution and Thlaspi caerulescens Growth on Soil Microbial Communities, Applied and Environmental Microbiology, vol.76, issue.23, pp.7843-7853, 2010.
DOI : 10.1128/AEM.01045-10

W. F. Röling, Microbial community composition and functions are resilient to metal pollution along two forest soil gradients, FEMS Microbiol. Ecol, vol.91, pp.1-11, 2015.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.44, issue.7415, pp.220-230, 2012.
DOI : 10.1097/QCO.0b013e32834a962d

J. P. Schimel, J. Bennett, and N. Fierer, Microbial community composition and soil nitrogen cycling: Is there really a connection? In Biological Diversity and Function in Soils, pp.171-188, 2005.

A. C. Martiny, K. Treseder, and G. Pusch, Phylogenetic conservatism of functional traits in microorganisms Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu, ISME 2013 Appl. Soil Ecol, vol.7, issue.32, pp.830-838, 2006.

J. F. Chau, A. C. Bagtzoglou, and M. R. Wilig, The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensics, pp.333-341, 2011.

J. K. Carson, V. Gonzalez-quinones, D. V. Murphy, C. Hinz, J. A. Shaw et al., Low Pore Connectivity Increases Bacterial Diversity in Soil, Applied and Environmental Microbiology, vol.76, issue.12, pp.3936-3942, 2010.
DOI : 10.1128/AEM.03085-09

A. Frostegård and E. Bååth, The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil, Biology and Fertility of Soils, vol.28, issue.1-2, pp.59-65, 1996.
DOI : 10.1007/BF00384433

A. M. Stefanowicz, M. Niklí-nska, and R. Laskowski, METALS AFFECT SOIL BACTERIAL AND FUNGAL FUNCTIONAL DIVERSITY DIFFERENTLY, Environmental Toxicology and Chemistry, vol.27, issue.3, pp.591-598, 2008.
DOI : 10.1897/07-288.1

Å. Frostegård, A. Tunlid, and E. Bååth, Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals, Soil Biology and Biochemistry, vol.28, issue.1, pp.55-63, 1996.
DOI : 10.1016/0038-0717(95)00100-X

R. Turpeinen, T. Kairesalo, and M. M. Häggblom, Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils, FEMS Microbiology Ecology, vol.47, issue.1, pp.39-50, 2004.
DOI : 10.1016/S0168-6496(03)00232-0

D. P. Lejon, V. Nowak, S. Bouko, N. Pascault, C. Mougel et al., Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination, FEMS Microbiology Ecology, vol.61, issue.3, pp.61-424, 2007.
DOI : 10.1111/j.1574-6941.2007.00365.x

URL : https://hal.archives-ouvertes.fr/insu-00386976

H. Blanck and S. A. Wängberg, Induced Community Tolerance in Marine Periphyton established under Arsenate Stress, Canadian Journal of Fisheries and Aquatic Sciences, vol.45, issue.10, pp.1816-1819, 1988.
DOI : 10.1139/f88-213

S. Silver and L. Phung, BACTERIAL HEAVY METAL RESISTANCE: New Surprises, Annual Review of Microbiology, vol.50, issue.1, pp.753-789, 1996.
DOI : 10.1146/annurev.micro.50.1.753

A. Jaroslawiecka, Piotrowska-Seget, Z. Lead resistance in micro-organisms. Microbiology, pp.12-25, 2014.

P. L. Klerks and J. S. Weis, Genetic adaptation to heavy metals in aquatic organisms: A review, Environmental Pollution, vol.45, issue.3, pp.173-205, 1987.
DOI : 10.1016/0269-7491(87)90057-1

E. Puglisi, R. E. Hamon, S. Vasileiadis, D. Coppolecchia, and M. Trevisan, Adaptation of Soil Microorganisms to Trace Element Contamination: A Review of Mechanisms, Methodologies, and Consequences for Risk Assessment and Remediation, Critical Reviews in Environmental Science and Technology, vol.26, issue.22, pp.2435-2470, 2012.
DOI : 10.1016/j.envpol.2004.02.011

H. Blanck, A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities, Human and Ecological Risk Assessment: An International Journal, vol.8, issue.5, pp.1003-1034, 2002.
DOI : 10.1080/1080-700291905792

Å. R. Almås, L. R. Bakken, and J. Mulder, Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils, Soil Biology and Biochemistry, vol.36, issue.5, pp.805-813, 2004.
DOI : 10.1016/j.soilbio.2004.01.010

M. R. Davis, F. Zhao, and S. P. Mcgrath, POLLUTION-INDUCED COMMUNITY TOLERANCE OF SOIL MICROBES IN RESPONSE TO A ZINC GRADIENT, Environmental Toxicology and Chemistry, vol.23, issue.11, pp.2665-2672, 2004.
DOI : 10.1897/03-645

M. Díaz-raviña, E. Bååth, and A. Frostegård, Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique, Appl. Environ. Microbiol, vol.60, pp.2238-2247, 1994.

R. D. Vinebrooke, K. L. Cottingham, J. Norberg, M. Scheffer, S. I. Dodson et al., Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance, Oikos, vol.381, issue.3, pp.451-457, 2004.
DOI : 10.1111/j.0030-1299.2004.13255.x

S. Ruyters, J. Mertens, D. Springael, and E. Smolders, Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress, Soil Biology and Biochemistry, vol.42, issue.5, pp.766-772, 2010.
DOI : 10.1016/j.soilbio.2010.01.012

H. Deng, X. F. Li, W. D. Cheng, and Y. G. Zhu, Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters, FEMS Microbiology Ecology, vol.70, issue.2, pp.293-304, 2009.
DOI : 10.1111/j.1574-6941.2009.00741.x

J. S. Chapman, Disinfectant resistance mechanisms, cross-resistance, and co-resistance, International Biodeterioration & Biodegradation, vol.51, issue.4, pp.271-276, 2003.
DOI : 10.1016/S0964-8305(03)00044-1

D. H. Nies, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiology Reviews, vol.27, issue.2-3, pp.313-339, 2003.
DOI : 10.1016/S0168-6445(03)00048-2

T. Day, Competition and the Effect of Spatial Resource Heterogeneity on Evolutionary Diversification, The American Naturalist, vol.155, issue.6, pp.790-803, 2000.
DOI : 10.1086/303356

J. N. Jasmin and R. Kassen, On the experimental evolution of specialization and diversity in heterogeneous environments, Ecology Letters, vol.143, issue.4, pp.272-281, 2007.
DOI : 10.1073/pnas.0404397101

H. D. Rundle and P. Nosil, Ecological speciation, Ecology Letters, vol.5, issue.3, pp.336-352, 2005.
DOI : 10.1111/j.1461-0248.2004.00715.x

A. W. Van-der-wurff, M. Y. Boivin, . Van-den, P. J. Brink, S. A. Kools et al., TYPE OF DISTURBANCE AND ECOLOGICAL HISTORY DETERMINE STRUCTURAL STABILITY, Ecological Applications, vol.17, issue.1, pp.190-202, 2007.
DOI : 10.1007/BF00142333

H. Azarbad, R. Laskowski, C. A. Van-gestel, N. M. Van-straalen, K. Nikiel et al., Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients, Applied Soil Ecology, vol.98, pp.233-242, 2016.
DOI : 10.1016/j.apsoil.2015.10.020

B. S. Griffiths, K. Ritz, R. D. Bardgett, R. Cook, S. Christensen et al., Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship, Oikos, vol.90, issue.2, pp.279-294, 2000.
DOI : 10.1034/j.1600-0706.2000.900208.x

B. S. Griffiths, M. Bonkowski, J. Roy, and K. Ritz, Functional stability, substrate utilisation and biological indicators of soils following environmental impacts, Applied Soil Ecology, vol.16, issue.1, pp.49-61, 2001.
DOI : 10.1016/S0929-1393(00)00081-0

B. S. Griffiths, H. L. Kuan, K. L. Ritz, A. Glover, A. E. Mccaig et al., The Relationship between Microbial Community Structure and Functional Stability, Tested Experimentally in an Upland Pasture Soil, Microbial Ecology, vol.47, issue.1, pp.104-113, 2004.
DOI : 10.1007/s00248-002-2043-7

H. L. Kuan, P. D. Hallett, B. S. Griffiths, A. S. Gregory, C. W. Watts et al., The biological and physical stability and resilience of a selection of Scottish soils to stresses, European Journal of Soil Science, vol.37, issue.3, pp.811-821, 2007.
DOI : 10.2136/sssaj2003.0256

A. S. Gregory, C. W. Watts, B. S. Griffiths, P. D. Hallett, H. L. Kuan et al., The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England, Geoderma, vol.153, issue.1-2, pp.172-185, 2009.
DOI : 10.1016/j.geoderma.2009.08.002

B. Zhang, H. Deng, H. Wang, R. Yin, P. D. Hallett et al., Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?, Soil Biology and Biochemistry, vol.42, issue.5, pp.850-859, 2010.
DOI : 10.1016/j.soilbio.2010.02.004

M. A. Tobor-kap?on, J. Bloem, and P. C. De-ruiter, FUNCTIONAL STABILITY OF MICROBIAL COMMUNITIES FROM LONG-TERM STRESSED SOILS TO ADDITIONAL DISTURBANCE, Environmental Toxicology and Chemistry, vol.25, issue.8, 1993.
DOI : 10.1897/05-398R1.1

T. Bell, J. A. Newman, B. W. Silverman, S. L. Turner, and A. K. Lilley, The contribution of species richness and composition to bacterial services, Nature, vol.436, issue.7054, pp.1157-1160, 2005.
DOI : 10.1038/nature03891

S. Langenheder, M. T. Bulling, M. Solan, and J. Prosser, Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity, PLoS ONE, vol.5, issue.5, p.10834, 2010.
DOI : 10.1371/journal.pone.0010834.s005

E. S. Lindström, X. M. Feng, W. Granél, and E. S. Kritzberg, The interplay between bacterial community composition and the environment determining function of inland water bacteria, Limnology and Oceanography, vol.55, issue.5, pp.2052-2060, 2010.
DOI : 10.4319/lo.2010.55.5.2052

S. Naeem and S. B. Li, Biodiversity enhances ecosystem reliability, Nature, vol.390, issue.6659, pp.507-509, 1997.
DOI : 10.1038/37348

S. Wertz, V. Degrange, J. I. Prosser, F. Poly, C. Commeaux et al., Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance, Environmental Microbiology, vol.61, issue.9, pp.2211-2219, 2007.
DOI : 10.1073/pnas.96.4.1463

URL : https://hal.archives-ouvertes.fr/halsde-00155947

F. S. Chapin, B. H. Walker, R. J. Hobbs, D. U. Hooper, J. H. Lawton et al., Biotic Control over the Functioning of Ecosystems, Science, vol.277, issue.5325, pp.500-504, 1997.
DOI : 10.1126/science.277.5325.500

G. W. Luck, G. C. Daily, and P. Ehrlich, Population diversity and ecosystem services, Trends in Ecology & Evolution, vol.18, issue.7, pp.331-336, 2003.
DOI : 10.1016/S0169-5347(03)00100-9

M. S. Girvan, C. D. Campbell, K. Killham, J. I. Prosser, and L. A. Glover, Bacterial diversity promotes community stability and functional resilience after perturbation, Environmental Microbiology, vol.143, issue.3, pp.301-313, 2005.
DOI : 10.1016/S0038-0717(97)00062-X

A. D. Keiser, M. S. Strickland, N. Fierer, and M. A. Bradford, The effect of resource history on the functioning of soil microbial communities is maintained across time, Biogeosciences, vol.8, issue.6, pp.1477-1486, 2011.
DOI : 10.5194/bg-8-1477-2011

P. Garbeva, J. Postma, J. A. Van-veen, and J. Van-elsas, Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3, Environmental Microbiology, vol.83, issue.2, pp.233-246, 2006.
DOI : 10.1128/AEM.67.12.5849-5854.2001

D. A. Heemsbergen, M. P. Berg, M. Loreau, J. R. Van-hal, J. H. Faber et al., Biodiversity Effects on Soil Processes Explained by Interspecific Functional Dissimilarity, Science, vol.306, issue.5698, p.1019, 2004.
DOI : 10.1126/science.1101865

K. Westergaard, A. K. Müller, S. Christensen, J. Bloem, and S. J. Sørensen, Effects of tylosin as a disturbance on the soil microbial community, Soil Biology and Biochemistry, vol.33, issue.15, pp.2061-2071, 2001.
DOI : 10.1016/S0038-0717(01)00134-1

A. G. Velasco, A. Probanza, F. J. Gutierrez-mañero, A. C. Treviño, J. M. Moreno et al., Effect of fire and retardant on soil microbial activity and functional diversity in a Mediterranean pasture, Geoderma, vol.153, issue.1-2, pp.186-193, 2009.
DOI : 10.1016/j.geoderma.2009.08.005

G. Chaer, M. Fernandes, D. Myrold, and P. Bottomley, Comparative Resistance and Resilience of Soil Microbial Communities and Enzyme Activities in Adjacent Native Forest and Agricultural Soils, Microbial Ecology, vol.29, issue.2, pp.414-494, 2009.
DOI : 10.1007/s00248-009-9508-x

P. Balvanera, A. B. Pfisterer, N. Buchmann, J. S. He, T. Nakashizuka et al., Quantifying the evidence for biodiversity effects on ecosystem functioning and services, Ecology Letters, vol.306, issue.10, pp.1146-1156, 2006.
DOI : 10.1111/j.1461-0248.2006.00963.x

C. A. Seybold, J. E. Herrick, and J. J. Brejda, SOIL RESILIENCE: A FUNDAMENTAL COMPONENT OF SOIL QUALITY, Soil Science, vol.164, issue.4, pp.224-234, 1999.
DOI : 10.1097/00010694-199904000-00002

D. Ruiter, P. C. Griffiths, B. S. Moore, and J. , Biodiversity and stability in soil ecosystems: Patterns, processes and the effects of disturbance Synthesis and Perspectives, Biodiversity and Ecosystem Functioning, pp.102-113, 2002.

K. H. Domsch, Effects of pesticides and heavy metals on biological processes in soil, Plant and Soil, vol.7, issue.1-3, pp.367-378, 1984.
DOI : 10.1007/BF02205594

E. Kandeler, C. Kampichler, and O. Horak, Influence of heavy metals on the functional diversity of soil microbial communities, Biology and Fertility of Soils, vol.26, issue.3, pp.299-306, 1996.
DOI : 10.1007/BF00335958

D. Fernández-calviño, M. Arias-estévez, M. Díaz-raviña, and E. Bååth, Bacterial pollution induced community tolerance (PICT) to Cu and interactions with pH in long-term polluted vineyard soils, Soil Biology and Biochemistry, vol.43, issue.11, pp.2324-2331, 2011.
DOI : 10.1016/j.soilbio.2011.08.001

W. F. Röling, M. G. Milner, D. M. Jones, F. Fratepietro, R. P. Swannell et al., Bacterial Community Dynamics and Hydrocarbon Degradation during a Field-Scale Evaluation of Bioremediation on a Mudflat Beach Contaminated with Buried Oil, Applied and Environmental Microbiology, vol.70, issue.5, pp.2603-2613, 2004.
DOI : 10.1128/AEM.70.5.2603-2613.2004

S. Åkerblom, E. Bååth, and L. Bringmark, Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers, Biology and Fertility of Soils, vol.24, issue.1, pp.79-91, 2007.
DOI : 10.1007/s00374-007-0181-2

B. P. Degens, L. A. Schipper, G. P. Sparling, and L. C. Duncan, Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance?, Soil Biology and Biochemistry, vol.33, issue.9, pp.1143-1153, 2001.
DOI : 10.1016/S0038-0717(01)00018-9

N. Fierer and R. B. Jackson, The diversity and biogeography of soil bacterial communities, Proc. Natl. Acad. Sci, pp.626-631, 2006.
DOI : 10.1073/pnas.0507535103

C. A. Van-gestel and S. Mol, The influence of soil characteristics on cadmium toxicity for Folsomia candida (Collembola: Isotomidae), Pedobiologia, vol.47, issue.4, pp.387-395, 2003.
DOI : 10.1078/0031-4056-00202

S. Royer-tardif, R. L. Bradley, and W. F. Parsons, Evidence that plant diversity and site productivity confer stability to forest floor microbial biomass, Soil Biology and Biochemistry, vol.42, issue.5, pp.813-821, 2010.
DOI : 10.1016/j.soilbio.2010.01.018

R. G. Luthy, G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gschwend et al., Sequestration of Hydrophobic Organic Contaminants by Geosorbents, Environmental Science & Technology, vol.31, issue.12, pp.31-3341, 1997.
DOI : 10.1021/es970512m

R. A. Sandaa, V. Torsvik, O. Enger, F. L. Daae, T. Castberg et al., Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution, FEMS Microbiology Ecology, vol.30, issue.3, pp.229-236, 1999.
DOI : 10.1111/j.1574-6941.1999.tb00652.x