Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis.
Psylvia Léger, Marilou T etard, Berthe Youness, Nicole Cordes, Ronan N Rouxel, Marie Flamand, Pierre-Yves Lozach

To cite this version:

HAL Id: pasteur-01351418
https://hal-riip.archives-ouvertes.fr/pasteur-01351418
Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License
Differential use of the C-type lectins L-SIGN and DC-SIGN for phlebovirus endocytosis

Psylvia Léger¹,⁸, Marilou Tetard²,³,⁸, Berthe Youness¹,²,⁴, Nicole Cordes¹, Ronan Nicolas Rouxel²,⁵, Marie Flamand⁶, Pierre-Yves Lozach¹,²

From ¹CellNetworks – Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany; ²INRS-Institut Armand-Frappier, Laval (Québec), Canada; ⁶Structural Virology, Institut Pasteur, Paris, France.

#equally contributed to this work.

Present address: ³Inserm UMR_S1134, Paris, France, ⁴Reproduction Genetics Unit, Department of Gynecological Endocrinology & Reproductive Medicine, University Hospital Heidelberg, Germany, ⁵UR_0892 Unité de Virologie et Immunologie Moléculaire, INRA, CRJ, Jouy-en-Josas, France

Correspondence: P.Y.L.; E-Mail: pierre-yves.lozach@med.uni-heidelberg.de; Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Germany; Phone +49 6221-56-1328; Fax +49 6221-56-5003

Running title: L-SIGN and phleboviruses
Abstract
Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors, and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV), and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, though both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.

Keywords
Binding, bunyavirus, C-type lectins, CD209, CD209L, DC-SIGN, DC-SIGNR, endocytosis, endocytic motif, L-SIGN, phlebovirus, Rift Valley fever virus, uptake, Uukuniemi virus, virus receptor.

Synopsis (Graphical abstract)
The receptors and cellular factors used by phleboviruses (Bunyaviridae) to enter host cells remain largely unidentified. In addition to the C-type lectin DC-SIGN, we report here that several phleboviruses subvert the closely related protein L-SIGN for infection. Together, our results establish that L-SIGN is an attachment factor not required for virus internalization while DC-SIGN is an authentic entry receptor required for both binding and endocytosis. Our study underlines the importance of the subsequent entry processes in virus-receptor interactions beyond attachment.
Introduction

The Bunyaviridae is a large family of RNA viruses, which comprises five genera (Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, and Tospovirus) (1). With over 350 isolates distributed worldwide, these viruses represent a global threat to livestock, agricultural productivity, and human public health (1). Many cause serious diseases with high mortality rates in domestic animals and humans, such as fatal hepatitis, encephalitis, and haemorrhagic fever. With the exception of hantaviruses, bunyaviruses are mainly spread by arthropods and consequently belong to the super group of arthropod-borne viruses (arboviruses) (1). Due to their mode of transmission and an increasing number of outbreaks, bunyaviruses are considered emerging agents of disease. Currently, there are no vaccines or treatments approved for human use.

Bunyaviruses have a three-segmented negative-sense RNA genome that exclusively replicates in the cytosol. The viral particles are enveloped and spherical with a diameter between 80 and 140 nm (1-3). The surface of particles is covered by two transmembrane glycoproteins, GN and GC, that are responsible for the attachment of the virus to target cells and for the subsequent acid-activated penetration from endosomal vacuoles (1, 4, 5). Inside the particles, the C-terminal tails of the virus glycoproteins are likely to interact with the ribonucleoproteins (RNPs) composed of the viral genome, the nucleoprotein N, and the RNA-dependent RNA polymerase.

Transmission, tropism, and cellular receptors remain largely uncharacterized (1). During natural transmission, bunyaviruses are introduced into the host skin through bites by infected arthropods. Dermal macrophages and dendritic cells (DCs), due to their location in the anatomical site of initial infection, are believed to play an important role in the bunyavirus spread throughout the host and infection (1). Both immune cell types are actively mobile upon stimulation and support infection by many bunyaviruses (6-12). In the late stages of infection, most host organs and tissues are invaded. The liver and hepatocytes appear as important targets of several bunyaviruses (13-16). Human liver sinusoidal endothelial cells (LSECs) express on their surface L-SIGN, a C-type (calcium-dependent) lectin specialized for the capture of foreign antigens (17).

L-SIGN, also known as CD209L or DC-SIGNR, is a type II membrane protein that binds high-mannose N-glycans through its C-terminal carbohydrate recognition domain (CRD)
It is present on the cell surface in different oligomerization states with tetramers having the highest avidity for a variety of substrates, including many viruses and viral glycoproteins (17, 19). A direct role of L-SIGN in virus internalization beyond attachment has, however, not been demonstrated. L-SIGN shares 77% amino acid sequence homology with DC-SIGN, another human C-type lectin that has recently been shown to serve as an authentic entry receptor for many orthobunyaviruses and phleboviruses to infect dermal DCs (6, 11, 20).

It is apparent that bunyaviruses use other receptors than DC-SIGN. They can infect a large spectrum of tissues that do not express this lectin, e.g., LSECs and hepatocytes. To determine whether L-SIGN promotes phlebovirus infection and whether this lectin can act as a receptor and explain the liver tropism of certain bunyaviruses, we analyzed virus binding, internalization, and infection of various phleboviruses in L-SIGN-expressing cell systems. The results provide a comprehensive view of phlebovirus-L-SIGN interactions and establish a role of L-SIGN as a key host factor for viral attachment, and therefore, for infection.
Results

Rift Valley fever, Toscana, and Uukuniemi viruses infect L-SIGN-expressing cells

Raji and HeLa cells stably expressing L-SIGN (Raji L-SIGN+ and HeLa L-SIGN+) were generated by transduction with a TRIPΔU3 lentiviral vector encoding human L-SIGN (Figure 1A) (21). To determine whether cells expressing L-SIGN support infection by bunyaviruses, we tested three phleboviruses, Rift Valley fever (RVFV), Toscana (TOSV), and Uukuniemi (UUKV) viruses. RVFV was rescued from plasmid DNAs and encoded the enhanced green fluorescent protein (EGFP) in place of the non-structural NSs protein (rRVFV-ΔNSs-EGFP) (22). The prototype lab strains of TOSV and UUKV were used. Cells were exposed to these viruses for 20 hours and viral replication was assayed by flow cytometry either for EGFP in RVFV-infected cells or for newly synthetized viral proteins of TOSV and UUKV following immuno-staining. To this latter end, a mouse ascitic fluid allowed detection of all the TOSV proteins whilst a monoclonal antibody (mAb) was used for detection of the UUKV protein N.

Raji and HeLa cells normally have low to no sensitivity to phlebovirus infection. As expected, parental Raji cells were nearly not infected with rRVFV-ΔNSs-EGFP, TOSV, and UUKV at a multiplicity of infection (MOI) of 10 or less (Figure 1B). However, when L-SIGN was expressed, a significant fraction of cells was infected at an MOI of 1 (Figure 1B). Similarly, the susceptibility of parental HeLa cells to infection by phleboviruses was minimal but significant at higher MOIs (Figure 1C). Nevertheless, infection of HeLa cells with RVFV-ΔNSs-EGFP, TOSV, and UUKV at various MOIs was dramatically increased when the lectin was expressed (Figure 1C). The capacity of L-SIGN to promote UUKV infection was confirmed by fluorescence microscopy in HeLa cells (Figure 1D) and in HEK-293T cells (data not shown).

Together, these results showed that L-SIGN ectopically expressed in cell lines supports infection with different phleboviruses, and that UUKV could be used as a model to investigate the role of L-SIGN in bunyavirus entry. In all further experiments, we used UUKV because it is a validated BSL2 surrogate for arthropod-borne bunyaviruses of higher biosafety classification. Therefore, the use of UUKV allows approaches such as live cell imaging that is nearly impossible for pathogenic bunyaviruses, most of which must be handled in higher biosafety laboratories.
L-SIGN mediates infection

The fraction of L-SIGN-expressing HeLa cells infected with UUKV increased over time, emphasizing that progeny virus, and not input virus, was quantified in our flow cytometry-based assays (Figure 1E). Moreover, concomitant staining against L-SIGN and UUKV proteins showed that infection increased with increasing L-SIGN expression (Figure 1F). To confirm that the infection was mediated by L-SIGN, we utilized inhibitors of the lectin such as EGTA, mannan, and the neutralizing mAb 1621. EGTA inhibits the L-SIGN binding function by extracting the bound calcium, and mannan is a competitor of insect-derived glycans (23). The increase in infectivity due to L-SIGN expression was significantly reduced in cells treated by these inhibitors (Figure 1G). Together, these results clearly indicate that UUKV infection is mediated by L-SIGN.

L-SIGN enhances binding of UUKV to cells

To examine whether L-SIGN enhanced infection by promoting phlebovirus binding, we utilized fluorescently labeled UUKV particles. These particles can be seen as single spots by confocal microscopy; no significant impact of labeling on infectivity is observed (5, 6). Virus binding to L-SIGN-expressing HeLa cells was imaged by confocal microscopy (Figure 2A). The number of particles bound per HeLa cell was significantly increased in the presence of L-SIGN (Figure 2B).

Binding to L-SIGN-expressing Raji cells was also analyzed by flow cytometry. When Raji L-SIGN+ cells were exposed to various amounts of Alexa Fluor (AF) 568-conjugated UUKV (UUKV-AF568), improved binding correlated with an increasing concentration of input virus under conditions in which no binding was observed to parental cells (Figure 2C). The presence of L-SIGN inhibitors, namely the neutralizing mAb 1621, mannan, and EDTA, which, like EGTA, blocks the lectin by extracting the bound calcium, impaired virus binding on Raji L-SIGN+ cells (Figure 2D). Confocal microscopy, following immuno-staining with an anti-L-SIGN mAb that recognizes the CRD of the lectin showed that the bound UUKV-AF568 particles were associated with L-SIGN-containing spots and areas of different sizes (Figure 2E). These were most likely viruses bound to lectin molecules in a close vicinity of additional, non-engaged L-SIGN proteins (i.e., within lectin tetramers or clusters). Altogether, these experiments show that L-SIGN supports UUKV binding through specific and direct interactions.
UUKV is efficiently internalized into L-SIGN-expressing cells

To test whether L-SIGN facilitates UUKV endocytosis, we exposed HeLa L-SIGN+ cells to UUKV-AF568 at 4 °C, washed them to remove unbound material, and rapidly warmed to 37 °C to allow internalization. Cells were fixed and viral particles were then imaged by confocal microscopy. Twenty minutes after warming, a significant fraction of particles were located in the cytosol (Figure 3A). Spinning-disc confocal video-microscopy of live cells also showed that UUKV-AF568 was taken up by HeLa cells expressing L-SIGN (Movie S1).

We have recently showed that UUKV relies on endosomal acidification for infectious entry (4, 5). We observed that UUKV infection of L-SIGN-expressing cells was also sensitive to agents that neutralize vacuolar pH, such as ammonium chloride (NH₄Cl), a lysomotropic weak base, and bafilomycin A1, a vacuolar-type H⁺-ATPase inhibitor (Figures 3B and 3C). These demonstrate that UUKV entry into L-SIGN-expressing cells involves endocytic internalization and acidification.

L-SIGN relies on the LL motif in its cytosolic tail for endocytosis

The L-SIGN cytosolic tail carries several sequence motifs and amino acids that are believed to be involved in signaling, endocytic internalization, and intracellular trafficking (24). These include serine, lysine, and threonine residues, but also, an acidic cluster as well as a dileucine-based motif, LL (Figure 4A). The classical LL motif is also present in the cytosolic tail of the closely related C-type lectin DC-SIGN. When the LL motif is absent, DC-SIGN by itself is no longer able to promote UUKV internalization and infection (6). To investigate the importance of this motif in the L-SIGN-dependent UUKV infection, we generated an L-SIGN mutant devoid of the LL sequence (L-SIGNLL) by site-directed mutagenesis (Figure 4A). HeLa cells were transduced with a TRIPΔU3 lentiviral vector encoding the wild type (WT) form of L-SIGN or the endocytosis-defective mutant (L-SIGNLL), and then sorted for populations expressing similar levels of the lectin molecules (HeLa L-SIGN low+ and HeLa L-SIGNLL+, Figure 4B). Both HeLa L-SIGN low+ and HeLa L-SIGNLL+ cell lines were used in all further experiments aiming to assess the role of the LL endocytic motif of L-SIGN in UUKV entry and infection.

To assess the endocytosis of L-SIGN, cells were incubated with the anti-L-SIGN fragment antigen binding (Fab) 162 on ice, and rapidly warmed to 37 °C to allow the internalization
of the lectin. Warming induced a dramatic redistribution of the WT L-SIGN receptors within 10 minutes, consistent with an intracellular accumulation of the lectin, and in agreement with a previous study (Figure 4C) (25). In marked contrast, we found that the majority of the mutant L-SIGNLl molecules remained at the cell surface after 30 minutes (Figure 4C). Together, our data indicate that the WT lectin receptor is efficiently internalized into HeLa cells upon mAb binding and that the LL motif is required for effective L-SIGN endocytosis.

UUKV does not depend on L-SIGN endocytosis for infection

We then assessed whether loss of the LL motif impaired UUKV infection. HeLa cells expressing similar levels of L-SIGN and L-SIGNLl molecules, i.e., HeLa L-SIGN low+ and HeLa L-SIGNLl+ (Figure 4B), were exposed to UUKV at various MOIs. We found that HeLa cells expressing L-SIGNLl were as efficiently infected as L-SIGN-expressing cells (Figure 5A). When infection was analyzed in cell populations selected for identical expression of the WT lectin and the endocytosis-defective mutant (Pop1, Figure 4B), similar results were observed (Figure 5B). These data suggest that L-SIGN endocytosis is dispensable for efficient UUKV infection.

To determine whether the endocytosis-defective form of L-SIGN internalizes the virus, L-SIGNLl-expressing HeLa cells were exposed to UUKV-AF568 in the cold, washed to remove unbound particles, and rapidly warmed to 37 °C to allow endocytosis. After fixation and permeabilization, infected cells were immuno-stained with anti-L-SIGN mAb, and analyzed by confocal microscopy. We found that L-SIGNLl bound UUKV with the same efficiency as cells expressing the WT lectin (Figure 5C). Thirty minutes after warming, several particles were seen internalized into both L-SIGN- and L-SIGNLl-expressing cells (Figure 5D). At this time, viruses accumulated in the perinuclear region, a typical location for late endosomal (LE) vesicles. However, while most internalized particles remained associated with lectin-containing endosomal vacuoles in L-SIGN-expressing cells, viruses were mainly found in vesicles devoid of the lectin in cells expressing the endocytosis-defective mutant of L-SIGN. This supports the view that L-SIGN by itself does not promote UUKV internalization.
Role of DC-SIGN and L-SIGN in UUKV infection

The C-type lectin DC-SIGN is closely related to L-SIGN, but unlike L-SIGN, acts as a true endocytic receptor for UUKV (6). The LL-based motif in the DC-SIGN cytosolic tail is critical for both lectin endocytosis and UUKV entry (6). To further examine the role of DC-SIGN and L-SIGN in phlebovirus infection, we used Raji and HeLa cell lines expressing comparable levels of lectin molecules on their surface, as evidenced by immuno-staining with the Fab 1621P that recognizes the CRD of both DC-SIGN and L-SIGN (Figures 6A and 6B). We found that Raji and HeLa cells expressing L-SIGN (Raji L-SIGN+ and HeLa L-SIGN+) were less efficiently infected by UUKV than DC-SIGN-expressing cells (Raji DC-SIGN+ and HeLa DC-SIGN+). Even higher differences were observed at lower MOIs (Figures 6C and 6D). However, the capacity of the two lectins to enhance UUKV infection was much closer in HeLa cells than in Raji cells (Figures 6C and 6D).

We then compared the importance of the LL-based motif in the cytosolic tail of L-SIGN and DC-SIGN for UUKV infection. HeLa cells expressing each lectin or their LL-based mutant form (Figures 4B and 7A) were exposed to UUKV at a MOI of 1 for 7 hours, and infection was assessed by flow cytometry for the newly synthetized viral protein N. In contrast to the endocytosis-defective mutant of L-SIGN, the LL-based mutant of DC-SIGN was less efficient in promoting UUKV infection than the WT molecule (about a 50% decrease, Figure 7B). These results confirm that the major difference between DC-SIGN and L-SIGN regarding UUKV infectious entry is that L-SIGN rather serves as an attachment factor for the virus.

To compare the timing of the acid-requiring step after endocytic entry into DC-SIGN- and L-SIGN-expressing HeLa cells, we bound virus to cells on ice and rapidly shifted the temperature to 37 °C to allow endocytosis. NH₄Cl was added at different times after warming to prevent further virus penetration. The entry process was faster in cells expressing DC-SIGN (Figure 7C). Infectious penetration started after a 5 minutes lag and reached a maximum level after 20 minutes in HeLa DC-SIGN+ cells versus 80 minutes in HeLa L-SIGN+ cells (Figure 7C). Spinning-disc confocal live imaging showed that the overall dynamics of virus uptake and intracellular trafficking is faster in HeLa cells expressing DC-SIGN versus L-SIGN (Movies S2 and S1). Taken together these data
indicate that the general properties and dynamics of UUKV infection are overall faster and more efficient in cells expressing DC-SIGN than L-SIGN.
Discussion
The expression of L-SIGN on LSECs and its capacity to bind N-glycans on viral glycoproteins make this lectin a candidate receptor responsible for liver tropism of enveloped hepatotropic viruses. As an immune receptor on endothelial cells, L-SIGN is thought to be critical for the capture, processing, and subsequent presentation of foreign antigens, thus promoting the initiation of the acquired immune system. It has been proposed that some viruses (including arboviruses of the flavi- and alphavirus families) have found a way to use L-SIGN for attachment and to promote viral entry and infection (17, 26).

In this study, we have expanded these observations to bunyaviruses. We found that several phleboviruses, namely RVFV, TOSV, and UUKV, use L-SIGN to infect cells expressing the lectin ectopically. Others have recently shown that L-SIGN enhances infection by rhabdoviral particles pseudotyped with the glycoproteins of the phlebovirus severe fever with thrombocytopenia syndrome, but not with those of RVFV or the orthobunyavirus La Crosse (LACV) (11). The engagement of multiple viral glycoproteins by homo-tetrameric lectins is critical for high-avidity interactions between the closely related C-type lectin DC-SIGN and the arbovirus dengue virus from the Flaviviridae family (27). Rhabdoviruses and bunyaviruses differ significantly with regard to the assembly and maturation of viral progeny. While pseudotyped particles are unquestionably of interest to study many aspects of virus transmission and entry, the structural organization of N-glycans on their surface may not exactly reflect the organization on RVFV and LACV viral particles, which in turn, could favor less-efficient virus binding to C-type lectins and infection.

Though high-mannose N-glycans are typical for insect-derived glycoproteins, bunyaviruses are usually rich in high-mannose N-glycans even when produced in mammalian cells (6, 28-30). This suggests that these viruses do not require production in insects to be recognized by L-SIGN. After introduction into the host dermis by infected arthropods and the initial infection, bunyaviruses conserve the ability to use C-type lectins with high affinity for mannose residues, such as L-SIGN, to target and infect new tissues in further rounds of infection. Although the interaction of additional bunyaviruses with L-SIGN must be assessed experimentally, it is likely that many can use L-SIGN as a receptor.
One of the phleboviruses, UUKV, was used to further analyze the role of the lectin in the infection process. Most bound UUKV particles were seen to be associated with L-SIGN. DC-SIGN was reported to bind UUKV directly via interactions with high-mannose N-glycans on the glycoproteins Gn/Gc (6). When cells expressing L-SIGN were exposed to UUKV in the presence of competitors of high-mannose N-glycans or neutralizing antibodies (Abs), virus binding was abolished. L-SIGN arguably binds phleboviruses through direct interactions with N-glycans on the viral glycoproteins, as reported for most interactions between other viruses and C-type lectins.

In DC-SIGN-expressing cells, the lectin is distributed within clusters of different sizes (6, 31). Similar to these observations, L-SIGN was found at the cell surface in lectin-containing membrane patches with heterogeneous sizes. In cells expressing DC-SIGN, UUKV has been shown to collect additional molecules of the receptor to the site of contact, thus generating a receptor-rich microdomain in the plasma membrane (PM) (6). Elucidating whether UUKV induces clustering of L-SIGN remains paramount. The lipid and protein composition and other properties may differ in these virus-induced membrane patches from the membrane at large, and consequently, significantly influence the subsequent signal transduction and endocytosis.

Using Abs, it has been shown that crosslinking on the cell surface is required to induce efficient endocytosis of DC-SIGN (31). DC-SIGN has also been recently reported to be involved in different signaling pathways (32, 33). When Abs against the ectodomain of L-SIGN were used in binding, the lectin was dramatically redistributed into the cells. Hence, it is highly probable that Abs allow the clustering of L-SIGN and the activation of a signaling pathway that triggers the endocytic uptake of the receptor cluster.

Though relatively short, the cytoplasmic tail of DC-SIGN and L-SIGN carries several signaling and internalization motifs. DC-SIGN critically relies on its cytosolic LL motif for the endocytosis of cargo (34, 35). When we expressed a mutant of L-SIGN lacking the LL motif in the cytosolic tail, Abs failed to trigger the internalization of the lectin. The LL-motif acts as a typical docking site for adaptor proteins required for the formation of clathrin-coated pits (CCPs), and therefore, receptor-induced clathrin-mediated endocytosis (CME) (24, 36). It is reasonable to assume that L-SIGN sorts cargo into the endocytic machinery via CME.
Our results contrast with a previous report on DC-SIGN, for which it is proposed that the lectin is an entry receptor required for both virus attachment and endocytosis into DCs (6). When the endocytosis-defective mutant of L-SIGN was expressed, UUKV particles still attached to the cells. Viruses were internalized and there was infection. We cannot completely rule out that L-SIGN by itself mediates virus internalization, as deletion of the LL type endocytosis signal often makes endocytosis of receptors less efficient rather than preventing endocytosis. However, our findings suggest that UUKV entry can be dissociated from lectin internalization, and the most likely scenario is that L-SIGN acts as an attachment factor for phleboviruses.

Parental HeLa cells, but not Raji cells, showed minimal but significant levels of UUKV infection at higher MOIs. In addition, L-SIGN was more efficient to promote infection of HeLa cells than Raji cells. Together this suggests the presence of a broadly-specific alternative receptor(s) with relatively low affinity. In this model, such a receptor molecule(s) would mediate phlebovirus attachment and entry with very poor efficiency in the absence of L-SIGN. Several lines of evidence implicate cellular receptors for phosphatidylserine in cell entry of emerging enveloped RNA viruses, in particular members of the TAM and TIM families (37-40). Since TAM receptors, in particular Axl, are expressed on many endothelial cells and in most HeLa cell lines, they may represent interesting co-receptor candidates to examine in the future.

The general properties and dynamics of UUKV entry were faster and more efficient in cells expressing DC-SIGN than L-SIGN. The incapacity of the DC-SIGN mutant to internalize the virus certainly modifies the global dynamics of virus-lectin interactions at the cell surface. In such a situation, it is conceivable that the DC-SIGN mutant-dependent infection implicates a co-receptor, most likely the same than that involved in the L-SIGN-dependent UUKV internalization. However this pathway seems to promote infection in a less extend than the normal entry route implying the endocytic activity of DC-SIGN. Cells expressing the DC-SIGN endocytosis-defective mutant are significantly less sensitive to UUKV than those expressing the WT lectin. The dynamics of the virus internalization directly through the lectin arguably determines the global efficiency of the infectious entry process.

Once the UUKV particles reached endosomes, our results indicated that viruses accumulated in the perinuclear region 20 minutes after internalization. This is a typical
location for LE vacuoles and is compatible with the late penetration of bunyaviruses (4, 5). At this time, viruses remained associated with L-SIGN-containing endosomal vesicles. In DC-SIGN-expressing cells, UUKV particles separated from the lectin in early endosomes (EEs) within 5-10 minutes (6). DC-SIGN tetramers undergo acid-induced disassembly below pH 6.5–6.7, and thereby lose their high avidity for cargo in EEs (18, 41). The effect of endosomal acidification on L-SIGN tetramers and release of cargo into endosomes remains unclear (18, 42, 43). We observed that UUKV particles remained associated within L-SIGN-positive vesicles 30 minutes after internalization. While we cannot exclude that viruses do not continue to interact with the lectin at this time, our results indicate that L-SIGN does not belong to the receptors that recycle from EEs to the PM, another major distinction with DC-SIGN (6).

Confirmation of these findings under physiological conditions remains challenging as primary human LSECs are extremely difficult to obtain due to scarcity of liver resections. However, we propose that by acting as an attachment receptor on LSECs, L-SIGN plays a role in the liver tropism of bunyaviruses. Beyond the importance of L-SIGN in bunyavirus infection, our results provide an indication of added complexity in the interactions between C-type lectins and viruses that are not simply limited to carbohydrate recognition. As for many other signaling virus receptors, the details of the transition processes between the extracellular and intracellular stages remain to be addressed and represent a challenge for future research in the field (24). With regards to this, UUKV appears to be a precious tool to study the endocytic receptor function of C-type lectins and to improve our understanding of the dynamics of virus-receptor interactions in general.
Materials and Methods

Cells
All products used for cell culture were from Life Technologies. Human B cells (Raji) and human epithelial cells (HeLa) were maintained in RPMI and DMEM, respectively, supplemented with 10% serum and antibiotics (100 µg/mL streptomycin and 100 U/mL penicillin). HeLa cells that stably express L-SIGN (NCBI, NP_055072) or the mutant L-SIGN_{LL} were obtained by transduction with the TRIPΔU3 lentiviral vector coding for the corresponding form of the lectin as previously reported for DC-SIGN and its endocytosis-defective mutant DC-SIGN_{LL} (21, 35). L-SIGN_{LL} was generated by site-directed mutagenesis (LL/AA, QuikChange Lightning kit, Agilent) of the TRIPΔU3 lentiviral vector encoding L-SIGN WT. Different levels of lectin expression were obtained by fluorescent-activated cell sorting (FACS) following immuno-fluorescence staining against the lectin. Raji cells expressing L-SIGN as well as Raji and HeLa cells expressing DC-SIGN or its endocytosis-defective form DC-SIGN_{LL} have been already described (6, 21, 35, 44).

Viruses
RVFV recombinant ZH548 strain (rRVFV-ΔNSs-EGFP), which codes for the EGFP reporter gene in place of the virulent factor NSs, was rescued from plasmid DNAs and amplified in Vero cells (22). The prototype strains of TOSV ISS and UUKV S23 have been described previously (45-47). Production, purification, and titration of TOSV and UUKV were performed in the mammalian Vero and BHK-21 cells, respectively, as shown elsewhere (5, 48). Labeling of UUKV with AF568-succinimidyl esters (Life Technologies) was performed in HEPES (20 mM) as recently described with other similar dyes (5, 6). Three molecules of the dye were conjugated to one molecule of UUKV glycoprotein. The MOI is given according to the titers determined on BHK-21 (UUKV) and Vero (TOSV and rRVFV) cells.

Antibodies and reagents
The anti-DC-SIGN/L-SIGN mouse mAb 1621 and the anti-DC-SIGN mouse mAb 162 as well as the phycoerythrin (PE)- and fluorescein isothiocyanate (FITC)-conjugated Fab 1621P (anti-DC-SIGN/L-SIGN) and Fab 162F (anti-L-SIGN) were all purchased from
R&D Systems. The mouse mAb 8B11A3 targets a linear epitope in the UUKV protein N and is a kind gift from A.K. Överby and Ludwig Institute for Cancer Research (Stockholm, Sweden) (49). The rabbit polyclonal antibody (pAb) U2 is directed against all the UUKV structural proteins (6). The mouse immune ascitic fluid against all TOSV structural proteins is a generous gift from R.B. Tesh (University of Texas, USA). NH₄Cl, mannan, and EGTA stocks were all from Sigma and dissolved in water. Bafilomycin A1 (Sigma) was dissolved in absolute methanol.

Flow cytometry-based detection of L-SIGN at the cell surface

Surface expression of L-SIGN was performed as previously reported (35). Briefly, cells expressing L-SIGN were harvested with PBS containing 1 mM EDTA to maintain all the surface proteins intact, and incubated with the PE-conjugated Fab 1621P (1:50) for one hour on ice in PBS with 2% serum before analysis by flow cytometry.

Infection assays

Cells were exposed to viruses at 37 °C in binding buffer (RPMI pH ~7.4 containing 0.2% BSA, 1 mM CaCl₂, and 2 mM MgCl₂) at indicating MOIs for one hour. Virus supernatant was replaced by culture medium and samples incubated at 37 °C for up to 48 hours. For inhibition assays, cells were pretreated with inhibitors at the indicated concentrations for 30 min and exposed to UUKV in the continuous presence of the inhibitors. When the lectin expression was assayed concomitantly to the viral replication, cells were harvested with PBS containing 1 mM EDTA to maintain intact all the surface proteins. After fixation and permeabilization with 0.1% saponin, infected cells were incubated with primary Abs against viral proteins at room temperature (RT) for one hour, washed, and subsequently exposed to AF-conjugated secondary Ab (1:500, Life Technologies) at RT for 45 minutes. The mAb 8B11A3 (1:400) and a mouse immune ascitic fluid (1:400) were used to detect intracellular UUKV and TOSV antigens, respectively. Cells infected with rRVFV-ΔNSs-EGFP were assayed following fixation for the EGFP signal. When the mAb 1621 (25 µg.mL⁻¹) and Fab 1621P (1:50) were used in infection assay to neutralize or detect L-SIGN, respectively, UUKV-infected cells were stained with the pAbs U2 (1:400). The infection was monitored either by wide-field fluorescence microscopy or flow cytometry.
Virus binding and internalization

Viruses were bound to the cells on ice in binding buffer for one hour at the indicated MOIs or concentrations of UUKV glycoproteins (6, 50). Cells were maintained in the cold or rapidly warmed to 37 °C for 30 minutes. Binding was analyzed by flow cytometry or fluorescence confocal microscopy. For binding inhibition, cells were pretreated with inhibitors at the indicated concentrations for 30 minutes and then exposed to viruses in the presence of the inhibitors. Internalization of the viruses was monitored in fixed or live samples using confocal microscopy. When co-localization of the viruses with L-SIGN was assessed, virus-bound cells were immuno-stained with the mAb 1621 or mAb 162 (1 µg.ml⁻¹) and then an AF488-coupled secondary mAb (1:1,000, Life Technologies) before imaging.

Internalization of L-SIGN

Internalization of L-SIGN was monitored as previously described for DC-SIGN (35). Briefly, HeLa cells expressing L-SIGN or L-SIGNLL were seeded on coverslips. The following day, cells were incubated with the anti-L-SIGN Fab 162F (1 µg.ml⁻¹) in PBS with 2% serum in the cold for one hour. Cells were then washed to remove unbound Ab and rapidly shifted to 37 °C for up to 30 minutes to allow Ab-induced L-SIGN endocytosis. Cells were fixed and analyzed by confocal microscopy.

NH₄Cl add-in time course

NH₄Cl add-in time course and PM-virus fusion assays were performed as recently reported (5). Briefly, virus binding (MOI ~3) was synchronized on ice. Virus-bound cells were rapidly warmed to 37 °C, and NH₄Cl (50 mM) was added at the indicated times (up to 80 minutes). Cells were subsequently incubated at 37 °C and harvested 7 hours later.

Flow cytometry and fluorescence microscopy

Flow cytometry-based analysis involved the use of a FACS Calibur cytometer (Becton Dickinson) and Flowjo software (Treestar). For wide-field microscopy, nuclei were stained with Hoechst 33258 (1 µg.mL⁻¹, Life Technologies) and cells imaged with an Olympus IX81 microscope. Confocal microscopy in fixed samples was performed with either a Zeiss LSM700 microscope or a Leica TCS SP2 microscope whilst live cells were imaged with a Nikon TiE Eclipse microscope equipped with a PerkinElmer UltraVIEW VoX 3D module.
Statistical Analysis

The data shown are representative of at least three independent experiments. Values are given as the mean of triplicates ± standard deviation (SD).
Acknowledgments
This work was supported by grants from CellNetworks Research Group funds, the Natural Sciences and Engineering Research Council of Canada #419538-2012, and the Banting Research Foundation to P.Y.L. We thank Amanda Chase for proof reading this paper. The excellent technical assistance of Jessy Tremblay, Vibor Laketa, and Niko Tsopoulidis in our microscopy-based approaches was highly appreciated. The ZMBH Flow Cytometry and FACS Core Facility of the University of Heidelberg as well as Jacques Thibodeau and Serge Senechal are gratefully acknowledged for their precious help in the sorting of higher expressor cells.
References

are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 2013;87(8):4384-4394.

Figure Legends

Figure 1: L-SIGN mediates infection by RVFV, TOSV and UUKV.

A) Raji and HeLa cells stably expressing L-SIGN were generated by transduction with a lentiviral vector encoding human L-SIGN. The expression of L-SIGN at the cell surface was detected by flow cytometry after immuno-staining with the Fab 1621P, which recognizes the CRD of the lectin.

B) Parental and L-SIGN-expressing Raji cells were infected with different multiplicities of infection (MOI) of rRVFV, TOSV, or UUKV for 20 hours. The recombinant RVFV strain expressed EGFP in place of the virulent non-structural protein NSs (rRVFV-ΔNSs-EGFP). Infection was assessed by flow cytometry either for EGFP in RVFV-infected cells or for newly intracellular TOSV antigens and UUKV protein N following immuno-staining with a mouse immune ascitic fluid and the mouse mAb 8B11A3, respectively, and an AF647-conjugated anti-mouse mAb. Results are shown as the percentage of EGFP-positive cells or the percentage of viral protein-positive cells (% of total).

C) Infection by rRVFV, TOSV, or UUKV was performed, monitored, and analyzed in parental and L-SIGN-expressing HeLa cells following the same procedure outlined in (B).

D) Parental and L-SIGN-expressing HeLa cells were exposed to various MOIs of UUKV. The day after, infected cells were immuno-stained for the intracellular UUKV nucleoprotein N using the anti-N primary mAb 8B11A3 and an AF568-coupled anti-mouse secondary mAb (red). Nuclei were stained with Hoechst (blue) and samples analyzed by wide-field microscopy.

E) UUKV infection (MOI ~1) was monitored over 48 hours in parental and L-SIGN-expressing HeLa cells (HeLa L-SIGN+) by flow cytometry analysis, as described in (B).

F) L-SIGN-expressing Raji cells were exposed to UUKV and harvested 8 hours later. Concomitant immuno-staining of infected cells allowed the detection of both L-SIGN (Fab 1621P) and newly synthetized UUKV intracellular proteins (pAb U2). Various subpopulations of cells were selected by flow cytometry for increasing expression of the lectin (y-axis), and each subpopulation was independently analysed for infection (x-axis). UUKV proteins and L-SIGN expression are given as the relative fluorescence intensities (RFI) associated with the 10,000 cells analyzed by flow cytometry.
G) L-SIGN-expressing Raji cells (Raji L-SIGN+) were infected with UUKV (MOI ~10) in the presence of inhibitors blocking L-SIGN, namely mannan (20 µg.mL⁻¹), EGTA (5 mM), and the neutralizing mAb 1621 (anti-L-SIGN, 25 µg.mL⁻¹). Intracellular viral antigens were detected by immuno-staining with an anti-UUKV pAb followed by an incubation with AF647-conjugated secondary Ab. Infection was analyzed by flow cytometry 20 hours later and normalized to infection of L-SIGN-expressing Raji cells in the absence of inhibitors (% of control).

Figure 2: L-SIGN is responsible for UUKV binding to cells through direct interactions.

A) UUKV-AF568 (MOI ~1) was bound to L-SIGN-expressing HeLa cells on ice and imaged by confocal microscopy. Spots are cell-associated particles seen in a series of z stacks merged to one plane. Fields with many cells are shown and depicted on the bottom right of each picture.

B) Bound particles per cell (n = 20) were counted in eight independent fields from (A).

C) Serial dilutions of UUKV-AF568 were bound to Raji and Raji L-SIGN+ cells on ice for 2 hours. UUKV-AF568 inputs were normalized according to the concentration of viral glycoproteins. Virus binding is expressed as the cell-associated RFI measured by flow cytometry.

D) UUKV-AF568 was bound to Raji and Raji L-SIGN+ cells (10 nM of viral glycoproteins, corresponding to a MOI ~0.5) on ice for 2 hours in the presence of L-SIGN inhibitors, namely the neutralizing mAb 1621 (Anti-L-SIGN, 25 µg.mL⁻¹), mannan (20 µg.mL⁻¹), and EDTA (5 mM). Binding was quantified by flow cytometry and normalized to binding to Raji L-SIGN+ cells in the absence of inhibitors (% of control).

E) UUKV-AF568 was bound to L-SIGN-expressing HeLa cells (MOI ~1) on ice for 2 hours. After fixation and permeabilization, the lectin was detected using the anti-L-SIGN primary mAb 162 and an AF488-coupled secondary anti-mouse Ab. UUKV (red) and L-SIGN (green) were imaged by confocal microscopy and are shown in one focal plane. Magnifications of association between UUKV and L-SIGN (numbered yellow squares) are shown on the right.

Figure 3: UUKV relies on endosomal acidification for L-SIGN-dependent infection.

A) UUKV-AF568 was bound to L-SIGN-expressing HeLa cells (MOI ~1) on ice for 2
hours. Infected cells were then washed and maintained in the cold or rapidly warmed to 37 °C for 20 minutes to trigger viral entry. After fixation, viral particles were imaged by confocal microscopy. Spots are cell-associated virus particles seen in one focal plane.

B and **C** HeLa cells expressing L-SIGN were pre-treated with varying concentrations of drugs that neutralize the endosomal pH, namely NH₄Cl (B) and Bafilomycin A1 (C), and then exposed to UUKV (MOI ~10) in the presence of the perturbants. Infected cells were harvested 20 hours later and immuno-stained for the UUKV nucleoprotein N as described in Figure 1B. Infection was analyzed by flow cytometry and normalized to L-SIGN-expressing Raji cells infected in the absence of inhibitor (% of control).

Figure 4: The cytoplasmic LL motif of L-SIGN is critical for the sorting of the lectin into the endocytic machinery.

A Schematic representation of the mutation introduced into the L-SIGN cytoplasmic tail (LL/AA, L-SIGN_LL). The endocytic LL-based motif is underlined. TMD stands for transmembrane domain.

B HeLa cell lines expressing either the WT form (HeLa L-SIGN low+) or the LL-based mutant of L-SIGN (HeLa L-SIGN_LL+) were generated by retroviral transduction and sorting for similar expression of the lectin. The cell surface was then immuno-stained with the PE-conjugated anti-L-SIGN Fab 1621P and analyzed by flow cytometry. Cell populations that express comparable amounts of L-SIGN and L-SIGN_LL at their surface (Pop1) were assessed for UUKV infection in Figure 5B.

C Subcellular localization of L-SIGN and L-SIGN_LL. HeLa L-SIGN low+ and HeLa L-SIGN_LL+ cells were incubated with the anti-L-SIGN FITC-conjugated Fab 162F on ice for one hour, washed to remove unbound Abs, and either maintained in the cold or rapidly warmed to 37 °C for up to 30 minutes. After fixation, the cellular localization of the lectins was examined by confocal microscopy.

Figure 5: L-SIGN by itself is not required for UUKV internalization and infection.

A HeLa L-SIGN low+ and HeLa L-SIGN_LL+ cells were exposed to UUKV at various MOIs. Infected cells were immuno-stained for the viral protein N, using the anti-N mAb 8B11A3, and analyzed by flow cytometry 7 hours later. Infection is expressed as the percentage of N-positive cells (% of total).
B) L-SIGN- and L-SIGNlll-expressing HeLa cells were infected with varying MOIs of UUKV and harvested 7 hours later. Samples were immuno-stained for newly synthetized UUKV proteins (anti-N mAb 8B11A3) and for the surface expression of the lectin (anti-L-SIGN Fab 1621P). Infection was quantified by flow cytometry in cell subpopulations selected for identical levels of lectin expression (L-SIGN low+ Pop1 and L-SIGNlll+ Pop1 in Figure 4B).

C) Fluorescent UUKV particles (UUKV-AF568, MOI ~1) were bound to HeLa cells expressing L-SIGN (HeLa L-SIGN low+) or its endocytosis-defective form (HeLa L-SIGNlll+) on ice for 2 hours before fixation and confocal imaging. Spots are cell-associated particles seen in a series of z stacks merged to one plane.

D) UUKV-AF568 (MOI ~1) was bound to HeLa cells expressing L-SIGN (HeLa L-SIGN+) or to the L-SIGN endocytosis-defective mutant (HeLa L-SIGNlll+) at 4 °C for 2 hours. Cells were washed to eliminate unbound viruses and either maintained on ice or warmed for 30 minutes. Samples were imaged by confocal microscopy after fixation, permeabilization, and staining of the lectin with the anti-L-SIGN primary mAb 162 followed by an incubation with an AF488-conjugated secondary Ab. Red spots are cell-associated virus particles seen in one focal plane. The lectin appears in green. Some magnifications (numbered yellow squares) are shown on the bottom.

Figure 6: Efficiency of DC-SIGN and L-SIGN in mediating UUKV infection.

Expression of either A) DC-SIGN or B) L-SIGN at the surface of Raji and HeLa cell lines (Raji DC-SIGN+, HeLa DC-SIGN+, Raji L-SIGN+, and HeLa L-SIGN+) was detected by flow cytometry after immuno-staining with the Fab 1621P, which recognizes the CRD of both L-SIGN and DC-SIGN.

C) DC-SIGN- and L-SIGN-expressing Raji cells were infected with UUKV at different MOIs and analyzed 20 hours post-infection by flow cytometry after immuno-staining against the UUKV nucleoprotein N. Infection is expressed as the percentage of N-positive cells (% of total).

D) Infection of HeLa cell lines expressing either DC-SIGN or L-SIGN with UUKV was performed, monitored, and analyzed following the same procedure as that in (C).
Figure 7: UUKV internalization and endosomal escape into DC-SIGN- and L-SIGN-expressing cells.

A) Expression of DC-SIGN and its endocytosis-defective mutant was detected on HeLa cells (HeLa DC-SIGN+ or HeLa DC-SIGN:self+ respectively) by flow cytometry after immuno-staining with the Fab 1621P.

B) HeLa cells that express L-SIGN, DC-SIGN, and the corresponding endocytosis-defective mutants (L-SIGN: or DC-SIGN: respectively) were assessed for UUKV replication 7 hours post-infection (MOI ~1). Cells positive for the UUKV protein N were quantified by flow cytometry. Infection was normalized to the infected HeLa cells expressing the WT lectin (% of control).

C) HeLa DC-SIGN+ and HeLa-L-SIGN+ cells were exposed to UUKV (MOI ~3) on ice, washed, and rapidly warmed. NH4Cl (50 mM) was added at different times to block further penetration. Infection was detected by flow cytometry 16 hours later and normalized to infection in the absence of NH4Cl.

Movie S1: UUKV uptake into L-SIGN-expressing cells.
This movie is related to Figures 3A and 7C. UUKV-AF568 (MOI ~3) was added to L-SIGN-expressing HeLa cells. Cells were visualized by spinning-disc confocal microscopy at 37 °C in the continuous presence of the virus. Images were taken at 1/53 Hz in one focal plane for 60 minutes. The video is displayed at 10 Hz. Virus particles (red) are seen being internalized rapidly into cells (differential interference contrast).

Movie S2: UUKV uptake into DC-SIGN-expressing cells.
This movie is related to Figure 7C. Live imaging of UUKV-AF568 uptake into DC-SIGN-expressing HeLa cells was performed, monitored, and analyzed following the same procedure as that for Movie S1.