I. Jutras and M. Desjardins, PHAGOCYTOSIS: At the Crossroads of Innate and Adaptive Immunity, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.511-527, 2005.
DOI : 10.1146/annurev.cellbio.20.010403.102755

R. Botelho and G. S. Phagocytosis, Phagocytosis, Current Biology, vol.21, issue.14, pp.533-538, 2011.
DOI : 10.1016/j.cub.2011.05.053

L. Ramachandra, R. Song, and C. Harding, Phagosomes are fully competent antigen-processing organelles that mediate the formation of peptide:class II MHC complexes, J Immunol, vol.162, pp.3263-3272, 1999.

M. Houde, S. Bertholet, E. Gagnon, S. Brunet, G. Goyette et al., Phagosomes are competent organelles for antigen cross-presentation, Nature, vol.425, issue.6956, pp.402-406, 2003.
DOI : 10.1038/nature01912

R. Flannagan, V. Jaumouille, and S. Grinstein, The Cell Biology of Phagocytosis, Annual Review of Pathology: Mechanisms of Disease, vol.7, issue.1, pp.61-98, 2012.
DOI : 10.1146/annurev-pathol-011811-132445

N. Moradin and A. Descoteaux, Leishmania promastigotes: building a safe niche within macrophages, Frontiers in Cellular and Infection Microbiology, vol.2, p.23050244, 2012.
DOI : 10.3389/fcimb.2012.00121

D. Matheoud, N. Moradin, A. Bellemare-pelletier, M. Shio, W. Hong et al., Leishmania Evades Host Immunity by Inhibiting Antigen Cross-Presentation through Direct Cleavage of the SNARE VAMP8, Cell Host & Microbe, vol.14, issue.1, pp.15-25, 2013.
DOI : 10.1016/j.chom.2013.06.003

URL : https://hal.archives-ouvertes.fr/pasteur-01131970

M. Desjardins and A. Descoteaux, Lipophosphoglycan, The Journal of Experimental Medicine, vol.269, issue.12, pp.2061-2068, 1997.
DOI : 10.1016/S0014-5793(96)01213-6

J. Dermine, G. Goyette, M. Houde, S. Turco, and M. Desjardins, Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages, Cellular Microbiology, vol.23, issue.9, pp.1263-1270, 2005.
DOI : 10.1111/j.1462-5822.2005.00550.x

A. Vinet, M. Fukuda, S. Turco, and A. Descoteaux, The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V, PLoS Pathogens, vol.36, issue.3, 2009.
DOI : 10.1371/journal.ppat.1000628.s004

H. Alvarez-de-celis, C. Gomez, A. Descoteaux, and P. Duplay, Dok proteins are recruited to the phagosome and degraded in a GP63-dependent manner during Leishmania major infection, Microbes and Infection, vol.17, issue.4, pp.285-294, 2015.
DOI : 10.1016/j.micinf.2014.12.011

URL : https://hal.archives-ouvertes.fr/hal-01196441

M. Gomez, I. Contreras, M. Halle, M. Tremblay, R. Mcmaster et al., Leishmania GP63 Alters Host Signaling Through Cleavage-Activated Protein Tyrosine Phosphatases, Science Signaling, vol.2, issue.90, 2009.
DOI : 10.1126/scisignal.2000213

I. Contreras, M. Gomez, O. Nguyen, M. Shio, R. Mcmaster et al., Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63, PLoS Pathogens, vol.1253, issue.10, p.20976196, 2010.
DOI : 10.1371/journal.ppat.1001148.s008

M. Jaramillo, M. Gomez, O. Larsson, M. Shio, I. Topisirovic et al., Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection, Cell Host & Microbe, vol.9, issue.4, pp.331-341, 2011.
DOI : 10.1016/j.chom.2011.03.008

A. Duque, G. Fukuda, M. Turco, S. Stager, S. Descoteaux et al., Promastigotes Induce Cytokine Secretion in Macrophages through the Degradation of Synaptotagmin XI, The Journal of Immunology, vol.193, issue.5, pp.2363-2372, 2014.
DOI : 10.4049/jimmunol.1303043

URL : https://hal.archives-ouvertes.fr/hal-01178774

A. Isnard, J. Christian, M. Kodiha, U. Stochaj, W. Mcmaster et al., Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity, PLOS Pathogens, vol.41, issue.5, p.25826301, 2015.
DOI : 10.1371/journal.ppat.1004776.s008

A. Savina, C. Jancic, S. Hugues, P. Guermonprez, P. Vargas et al., NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells, Cell, vol.126, issue.1, pp.205-218, 2006.
DOI : 10.1016/j.cell.2006.05.035

M. Sanjuan, C. Dillon, S. Tait, S. Moshiach, F. Dorsey et al., Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis, Nature, vol.114, issue.7173, pp.1253-1257, 2007.
DOI : 10.1038/ni0307-217a

S. Lai and R. Devenish, LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy, Cells, vol.1, issue.4, pp.396-408, 2012.
DOI : 10.3390/cells1030396

J. Huang and J. Brumell, Bacteria???autophagy interplay: a battle for survival, Nature Reviews Microbiology, vol.3, issue.2, p.24384599, 2014.
DOI : 10.1038/nrmicro3160

P. Mehta, J. Henault, R. Kolbeck, and M. Sanjuan, Noncanonical autophagy: one small step for LC3, one giant leap for immunity, Current Opinion in Immunology, vol.26, pp.69-75, 2014.
DOI : 10.1016/j.coi.2013.10.012

S. Romao and C. Munz, LC3-associated phagocytosis, Autophagy, vol.10, issue.3, pp.526-528, 2014.
DOI : 10.4161/auto.27606

J. Huang, V. Canadien, G. Lam, B. Steinberg, M. Dinauer et al., Activation of antibacterial autophagy by NADPH oxidases, Proceedings of the National Academy of Sciences, vol.106, issue.15, pp.6226-6231, 2009.
DOI : 10.1073/pnas.0811045106

J. Martinez, J. Almendinger, A. Oberst, R. Ness, C. Dillon et al., Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells, Proceedings of the National Academy of Sciences, vol.108, issue.42, pp.17396-17401, 2011.
DOI : 10.1073/pnas.1113421108

J. Ma, C. Becker, C. Lowell, and D. Underhill, Dectin-1-triggered Recruitment of Light Chain 3 Protein to Phagosomes Facilitates Major Histocompatibility Complex Class II Presentation of Fungal-derived Antigens, Journal of Biological Chemistry, vol.287, issue.41, pp.34149-34156, 2012.
DOI : 10.1074/jbc.M112.382812

R. Lodge, T. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cellular Microbiology, vol.58, issue.12, pp.1922-1931, 2006.
DOI : 10.1046/j.1462-5822.2003.00294.x

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, The EMBO Journal, vol.19, issue.21, pp.5720-5728, 2000.
DOI : 10.1093/emboj/19.21.5720

X. Li, M. Prescott, B. Adler, J. Boyce, and R. Devenish, Beclin 1 Is Required for Starvation-Enhanced, but Not Rapamycin-Enhanced, LC3-Associated Phagocytosis of Burkholderia pseudomallei in RAW 264.7 Cells, Infection and Immunity, vol.81, issue.1, pp.271-277, 2013.
DOI : 10.1128/IAI.00834-12

M. Olivier, V. Atayde, A. Isnard, K. Hassani, and M. Shio, Leishmania virulence factors: focus on the metalloprotease GP63, Microbes and Infection, vol.14, issue.15, pp.1377-1389, 2012.
DOI : 10.1016/j.micinf.2012.05.014

D. Campbell, U. Kurath, and J. Fleischmann, Identification of a gp63 surface glycoprotein in Leishmania tarentolae, FEMS Microbiol Lett, vol.75, pp.89-92, 1992.

L. Gong, M. Cullinane, P. Treerat, G. Ramm, M. Prescott et al., The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis, PLoS ONE, vol.184, issue.3, p.21412437, 2011.
DOI : 10.1371/journal.pone.0017852.g006

G. Lam, M. Cemma, A. Muise, D. Higgins, and J. Brumell, during the early stages of macrophage infection, Autophagy, vol.62, issue.7, pp.985-995, 2013.
DOI : 10.1046/j.1462-5822.2001.00087.x

J. Martinez, R. Malireddi, Q. Lu, L. Cunha, S. Pelletier et al., Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2??and autophagy proteins, Nature Cell Biology, vol.335, issue.7, pp.893-906, 2015.
DOI : 10.1038/nmeth1019

G. Spath, L. Garraway, S. Turco, and S. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9536-9541, 2003.
DOI : 10.1073/pnas.1530604100

N. Rodriguez, G. Dixit, U. Allen, L. Wilson, and M. , Stage-Specific Pathways of Leishmania infantum chagasi Entry and Phagosome Maturation in Macrophages, PLoS ONE, vol.73, issue.19, p.21552562, 2011.
DOI : 10.1371/journal.pone.0019000.g009

M. Winberg, A. Holm, E. Sarndahl, A. Vinet, A. Descoteaux et al., Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts, Microbes and Infection, vol.11, issue.2, 2009.
DOI : 10.1016/j.micinf.2008.11.007

URL : https://hal.archives-ouvertes.fr/pasteur-00819626

J. Ma, C. Becker, C. Reyes, and D. Underhill, Cutting Edge: FYCO1 Recruitment to Dectin-1 Phagosomes Is Accelerated by Light Chain 3 Protein and Regulates Phagosome Maturation and Reactive Oxygen Production, The Journal of Immunology, vol.192, issue.4, pp.1356-1360, 2014.
DOI : 10.4049/jimmunol.1302835

A. Choy, J. Dancourt, B. Mugo, O. Connor, T. Isberg et al., The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation, Science, vol.338, issue.6110, pp.1072-1076, 2012.
DOI : 10.1126/science.1227026

L. Soong, Modulation of Dendritic Cell Function by Leishmania Parasites, The Journal of Immunology, vol.180, issue.7, pp.4355-4360, 2008.
DOI : 10.4049/jimmunol.180.7.4355

D. Liu and J. Uzonna, The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response, Frontiers in Cellular and Infection Microbiology, vol.2, p.22919674, 2012.
DOI : 10.3389/fcimb.2012.00083

P. Crauwels, R. Bohn, M. Thomas, S. Gottwalt, F. Jackel et al., exploit the host??s autophagy machinery to reduce T-cell-mediated parasite elimination, Autophagy, vol.11, issue.2, pp.285-297, 2015.
DOI : 10.1002/cyto.a.21010

N. Furuta, N. Fujita, T. Noda, T. Yoshimori, and A. Amano, Combinational Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor Proteins VAMP8 and Vti1b Mediate Fusion of Antimicrobial and Canonical Autophagosomes with Lysosomes, Molecular Biology of the Cell, vol.21, issue.6, pp.1001-1010, 2010.
DOI : 10.1091/mbc.E09-08-0693

C. Wang, C. Ng, L. Lu, V. Atlashkin, W. Zhang et al., A Role of VAMP8/Endobrevin in Regulated Exocytosis of Pancreatic Acinar Cells, Developmental Cell, vol.7, issue.3, pp.359-371, 2004.
DOI : 10.1016/j.devcel.2004.08.002

A. Descoteaux and G. Matlashewski, c-fos and tumor necrosis factor gene expression in Leishmania donovani-infected macrophages., Molecular and Cellular Biology, vol.9, issue.11, pp.5223-5227, 1989.
DOI : 10.1128/MCB.9.11.5223

P. Joshi, B. Kelly, S. Kamhawi, D. Sacks, and W. Mcmaster, Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor, Molecular and Biochemical Parasitology, vol.120, issue.1, pp.33-40, 2002.
DOI : 10.1016/S0166-6851(01)00432-7

G. Chaudhuri, M. Chaudhuri, A. Pan, and K. Chang, Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages, J Biol Chem, vol.264, pp.7483-7489, 1989.