H. Lecoeur, E. Giraud, M. Prévost, G. Milon, and T. Lang, Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes, PLoS Neglected Tropical Diseases, vol.358, issue.6, 2013.
DOI : 10.1371/journal.pntd.0002276.s004

I. Rabhi, S. Rabhi, R. Ben-othman, A. Rasche, A. Daskalaki et al., Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View, PLoS Neglected Tropical Diseases, vol.6, issue.8, p.22928052, 2012.
DOI : 10.1371/journal.pntd.0001763.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00726648

J. Osorio-y-fortéa, E. De-la-llave, B. Regnault, J. Coppée, G. Milon et al., Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes, BMC Genomics, vol.10, issue.1, 2009.
DOI : 10.1186/1471-2164-10-119

P. Bozza, R. Melo, and C. Bandeira-melo, Leukocyte lipid bodies regulation and function: Contribution to allergy and host defense, Pharmacology & Therapeutics, vol.113, issue.1, pp.30-49, 2007.
DOI : 10.1016/j.pharmthera.2006.06.006

R. Melo, D. Avila, H. Wan, H. Bozza, P. Dvorak et al., Lipid Bodies in Inflammatory Cells, Journal of Histochemistry & Cytochemistry, vol.351, issue.5, pp.540-556, 2011.
DOI : 10.1016/j.cmet.2006.06.007

H. Saka and R. Valdivia, Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions, Annual Review of Cell and Developmental Biology, vol.28, issue.1, pp.411-448, 2012.
DOI : 10.1146/annurev-cellbio-092910-153958

R. Melo and A. Dvorak, Lipid Body???Phagosome Interaction in Macrophages during Infectious Diseases: Host Defense or Pathogen Survival Strategy?, PLoS Pathogens, vol.54, issue.7, p.22792061, 2012.
DOI : 10.1371/journal.ppat.1002729.t001

G. Barba, F. Harper, T. Harada, M. Kohara, S. Goulinet et al., Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets, Proceedings of the National Academy of Sciences, vol.94, issue.4, pp.1200-1205, 1997.
DOI : 10.1073/pnas.94.4.1200

C. Harris, E. Herker, R. V. Farese, and M. Ott, Hepatitis C Virus Core Protein Decreases Lipid Droplet Turnover: A MECHANISM FOR CORE-INDUCED STEATOSIS, Journal of Biological Chemistry, vol.286, issue.49, pp.42615-42640, 2011.
DOI : 10.1074/jbc.M111.285148

M. Samsa, J. Mondotte, N. Iglesias, I. Assunção-miranda, G. Barbosa-lima et al., Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation, PLoS Pathogens, vol.230, issue.7, 2009.
DOI : 10.1371/journal.ppat.1000632.t001

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence, PLoS Pathogens, vol.39, issue.11, pp.1-14, 2008.
DOI : 10.1371/journal.ppat.1000204.s002

J. Daniel, H. Maamar, C. Deb, T. Sirakova, and P. Kolattukudy, Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages, PLoS Pathogens, vol.11, issue.259, 2011.
DOI : 10.1371/journal.ppat.1002093.t003

D. Avila, H. Melo, R. Parreira, G. Werneck-barroso, E. Castro-faria-neto et al., Mycobacterium bovis Bacillus Calmette-Guerin Induces TLR2-Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis In Vivo, The Journal of Immunology, vol.176, issue.5, pp.3087-3097, 2006.
DOI : 10.4049/jimmunol.176.5.3087

D. Avila, H. Roque, N. Cardoso, R. Castro-faria-neto, H. Melo et al., production by macrophages, Cellular Microbiology, vol.152, issue.12, pp.2589-2604, 2008.
DOI : 10.1111/j.1462-5822.2008.01233.x

P. Almeida, A. Silva, C. Maya-monteiro, D. Töröcsik, D. Avila et al., Mycobacterium bovis Bacillus Calmette-Guerin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor ?? Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis, The Journal of Immunology, vol.183, issue.2, pp.1337-1345, 2009.
DOI : 10.4049/jimmunol.0900365

K. Mattos, H. Avila, L. Rodrigues, V. Oliveira, E. Sarno et al., Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis, Journal of Leukocyte Biology, vol.87, issue.3, pp.371-384, 2010.
DOI : 10.1189/jlb.0609433

K. Mattos, F. Lara, V. Oliveira, L. Rodrigues, D. Avila et al., Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes, Cellular Microbiology, vol.9, issue.2, pp.259-273, 2011.
DOI : 10.1111/j.1462-5822.2010.01533.x

K. De-mattos, E. Sarno, M. Pessolani, and P. Bozza, Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis, Mem??rias do Instituto Oswaldo Cruz, vol.107, pp.156-66, 2012.
DOI : 10.1590/S0074-02762012000900023

F. Cao, A. Castrillo, P. Tontonoz, F. Re, and G. Byrne, Chlamydia pneumoniae-Induced Macrophage Foam Cell Formation Is Mediated by Toll-Like Receptor 2, Infection and Immunity, vol.75, issue.2, pp.753-759, 2007.
DOI : 10.1128/IAI.01386-06

R. Rank, J. Whittimore, A. Bowlin, and P. Wyrick, In Vivo Ultrastructural Analysis of the Intimate Relationship between Polymorphonuclear Leukocytes and the Chlamydial Developmental Cycle, Infection and Immunity, vol.79, issue.8, pp.3291-301, 2011.
DOI : 10.1128/IAI.00200-11

Y. Kumar, J. Cocchiaro, and R. Valdivia, The Obligate Intracellular Pathogen Chlamydia trachomatis Targets Host Lipid Droplets, Current Biology, vol.16, issue.16, pp.1646-51, 2006.
DOI : 10.1016/j.cub.2006.06.060

P. Nawabi, D. Catron, and K. Haldar, Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection, Molecular Microbiology, vol.473, issue.1, pp.173-85, 2008.
DOI : 10.1128/IAI.71.1.1-12.2003

A. Khatchadourian, S. Bourque, V. Richard, V. Titorenko, and D. Maysinger, Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.4, pp.607-617, 2012.
DOI : 10.1016/j.bbalip.2012.01.007

R. Melo, D. Avila, H. Fabrino, D. Almeida, P. Bozza et al., Macrophage lipid body induction by Chagas disease in vivo: putative intracellular domains for eicosanoid formation during infection, Tissue and Cell, vol.35, issue.1, pp.59-67, 2003.
DOI : 10.1016/S0040-8166(02)00105-2

D. Avila, H. Freire-de-lima, C. Roque, N. Teixeira, L. Barja-fidalgo et al., Host Cell Lipid Bodies Triggered by Trypanosoma cruzi Infection and Enhanced by the Uptake of Apoptotic Cells Are Associated With Prostaglandin E2 Generation and Increased Parasite Growth, Journal of Infectious Diseases, vol.204, issue.6, pp.951-961, 2011.
DOI : 10.1093/infdis/jir432

A. Rodríguez-acosta, H. Finol, M. Pulido-méndez, A. Márquez, G. Andrade et al., Liver ultrastructural pathology in mice infected with Plasmodium berghei, J Submicrosc Cytol Pathol, vol.30, pp.299-307, 1998.

M. Pulido-méndez, H. Finol, M. Girón, and I. Aguilar, Ultrastructural pathological changes in mice kidney caused by Plasmodium berghei infection, J Submicrosc Cytol Pathol, vol.38, pp.143-151

A. Charron and L. Sibley, Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii, J Cell Sci, vol.115, pp.3049-3059, 2002.

R. Pinheiro, M. Nunes, C. Pinheiro, D. Avila, H. Bozza et al., Induction of autophagy correlates with increased parasite load of Leishmania amazonensis in BALB/c but not C57BL/6 macrophages, Microbes and Infection, vol.11, issue.2, 2009.
DOI : 10.1016/j.micinf.2008.11.006

S. Martin and R. Parton, Caveolin, cholesterol, and lipid bodies, Seminars in Cell & Developmental Biology, vol.16, issue.2, pp.163-174, 2005.
DOI : 10.1016/j.semcdb.2005.01.007

S. Martin and R. Parton, Lipid droplets: a unified view of a dynamic organelle, Nature Reviews Molecular Cell Biology, vol.13, issue.5, pp.373-378, 2006.
DOI : 10.1038/nrm1912

R. V. Farese, . Nih-public, and . Access, Lipid Droplets Finally Get a Little R-E-S-P-E-C-T, Cell, vol.139, issue.5, pp.855-860, 2011.
DOI : 10.1016/j.cell.2009.11.005

E. Herker and M. Ott, Emerging Role of Lipid Droplets in Host/Pathogen Interactions, Journal of Biological Chemistry, vol.287, issue.4, pp.2280-2287, 2012.
DOI : 10.1074/jbc.R111.300202

W. Khovidhunkit, M. Kim, R. Memon, J. Shigenaga, A. Moser et al., Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host, The Journal of Lipid Research, vol.45, issue.7, pp.1169-1196, 2004.
DOI : 10.1194/jlr.R300019-JLR200

K. Feingold and C. Grunfeld, Lipids: a key player in the battle between the host and microorganisms, The Journal of Lipid Research, vol.53, issue.12, pp.2487-2496, 2012.
DOI : 10.1194/jlr.E033407

D. Cicco, N. Pereira, M. Corrêa, J. Andrade-neto, V. V. Saraiva et al., LDL uptake by Leishmania amazonensis: Involvement of membrane lipid microdomains, Experimental Parasitology, vol.130, issue.4, pp.330-340, 2012.
DOI : 10.1016/j.exppara.2012.02.014

T. Araújo-santos, N. Rodríguez, S. De-moura-pontes, U. Dixt, D. Abánades et al., Role of Prostaglandin F2?? Production in Lipid Bodies From Leishmania infantum chagasi: Insights on Virulence, Journal of Infectious Diseases, vol.210, issue.12, pp.1951-1961, 2014.
DOI : 10.1093/infdis/jiu299

R. Polando, U. Dixit, C. Carter, B. Jones, J. Whitcomb et al., The roles of complement receptor 3 and Fc?? receptors during Leishmania phagosome maturation, Journal of Leukocyte Biology, vol.93, issue.6, pp.921-953, 2013.
DOI : 10.1189/jlb.0212086

G. Kellner-weibel, B. Mchendry-rinde, M. Haynes, and S. Adelman, Evidence that newly synthesized esterified cholesterol is deposited in existing cytoplasmic lipid inclusions, J Lipid Res, vol.42, pp.768-777, 2001.

C. Harris, J. Haas, R. Streeper, S. Stone, M. Kumari et al., DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes, The Journal of Lipid Research, vol.52, issue.4, pp.657-67, 2011.
DOI : 10.1194/jlr.M013003

N. Xu, S. Zhang, R. Cole, S. Mckinney, F. Guo et al., The FATP1???DGAT2 complex facilitates lipid droplet expansion at the ER???lipid droplet interface, The Journal of Cell Biology, vol.15, issue.5, pp.895-911, 2012.
DOI : 10.1083/jcb.201201139.dv

P. Bozza, K. Magalhães, and P. Weller, Leukocyte lipid bodies ??? Biogenesis and functions in inflammation, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.540-551, 2009.
DOI : 10.1016/j.bbalip.2009.01.005

I. Arginase, and prostaglandin E2 pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis, J Infect Dis, vol.211, pp.426-461, 2015.

L. Passero, M. Laurenti, T. Tomokane, C. Corbett, and M. Toyama, The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection, Parasitology Research, vol.100, issue.5, pp.1025-1058, 2008.
DOI : 10.1007/s00436-007-0871-6

P. Das, T. De, and T. Chakraborti, Leishmania donovani secretory serine protease alters macrophage inflammatory response via COX-2 mediated PGE-2 production, Indian J Biochem Biophys. Available, vol.51, pp.542-51, 2014.

C. Matte, G. Maion, W. Mourad, and M. Olivier, Leishmania donovani-induced macrophages cyclooxygenase-2 and prostaglandin E2 synthesis, Parasite Immunology, vol.131, issue.4, pp.177-184, 2001.
DOI : 10.1074/jbc.271.32.19134

M. Jaramillo, M. Gomez, O. Larsson, M. Shio, I. Topisirovic et al., Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection, Cell Host & Microbe, vol.9, issue.4, pp.331-372, 2011.
DOI : 10.1016/j.chom.2011.03.008

A. Vinet, M. Fukuda, S. Turco, and A. Descoteaux, The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V, PLoS Pathogens, vol.36, issue.3, 2009.
DOI : 10.1371/journal.ppat.1000628.s004

D. Matheoud, N. Moradin, A. Bellemare-pelletier, M. Shio, W. Hong et al., Leishmania Evades Host Immunity by Inhibiting Antigen Cross-Presentation through Direct Cleavage of the SNARE VAMP8, Cell Host & Microbe, vol.14, issue.1, pp.15-25, 2013.
DOI : 10.1016/j.chom.2013.06.003

URL : https://hal.archives-ouvertes.fr/pasteur-01131970

R. Melo, D. Fabrino, F. Dias, and G. Parreira, Lipid bodies: structural markers of inflammatory macrophages in innate immunity, Inflammation Research, vol.55, issue.8, pp.342-350, 2006.
DOI : 10.1007/s00011-006-5205-0

K. Feingold and C. Grunfeld, The acute phase response inhibits reverse cholesterol transport, The Journal of Lipid Research, vol.51, issue.4, pp.682-686, 2010.
DOI : 10.1194/jlr.E005454

Y. Bashmakov, N. Zigangirova, Y. Pashko, L. Kapotina, and I. Petyaev, Chlamydia trachomatis growth inhibition and restoration of LDL-receptor level in HepG2 cells treated with mevastatin, Comparative Hepatology, vol.9, issue.1, p.20181044, 2010.
DOI : 10.1186/1476-5926-9-3

G. Martens, M. Arikan, J. Lee, F. Ren, T. Vallerskog et al., Hypercholesterolemia Impairs Immunity to Tuberculosis, Infection and Immunity, vol.76, issue.8, pp.3464-72, 2008.
DOI : 10.1128/IAI.00037-08

L. Portugal, L. Fernandes, P. Pedroso, V. Santiago, H. Gazzinelli et al., Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection, Microbes and Infection, vol.10, issue.3, pp.276-284, 2008.
DOI : 10.1016/j.micinf.2007.12.001

J. Ghosh, S. Das, R. Guha, D. Ghosh, K. Naskar et al., Hyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol, The Journal of Lipid Research, vol.53, issue.12, pp.2560-72, 2012.
DOI : 10.1194/jlr.M026914

N. Mellouk, A. Weiner, N. Aulner, C. Schmitt, M. Elbaum et al., Shigella Subverts the Host Recycling Compartment to Rupture Its Vacuole, Cell Host & Microbe, vol.16, issue.4, pp.517-530, 2014.
DOI : 10.1016/j.chom.2014.09.005

URL : https://hal.archives-ouvertes.fr/pasteur-01113365