L. Hennighausen and G. Robinson, Information networks in the mammary gland, Nature Reviews Molecular Cell Biology, vol.9, issue.9, pp.715-725, 2005.
DOI : 10.1038/nrm1714

H. Macias and L. Hinck, Mammary gland development, Wiley Interdisciplinary Reviews: Developmental Biology, vol.100, issue.4, pp.533-557, 2012.
DOI : 10.1002/wdev.35

J. Howlin, J. Mcbryan, and F. Martin, Pubertal Mammary Gland Development: Insights from Mouse Models, Journal of Mammary Gland Biology and Neoplasia, vol.14, issue.Pt 18, pp.283-297, 2006.
DOI : 10.1007/s10911-006-9024-2

C. Watson and P. Kreuzaler, Remodeling mechanisms of the mammary gland during involution, The International Journal of Developmental Biology, vol.55, issue.7-8-9, pp.757-762, 2011.
DOI : 10.1387/ijdb.113414cw

E. Mclachlan, Q. Shao, and D. Laird, Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression, Journal of Membrane Biology, vol.72, issue.Suppl, pp.107-121, 2007.
DOI : 10.1007/s00232-007-9052-x

M. Stewart, J. Simek, and D. Laird, Insights into the role of connexins in mammary gland morphogenesis and function, Reproduction, vol.149, issue.6, pp.279-90, 2015.
DOI : 10.1530/REP-14-0661

G. Sosinsky, D. Boassa, R. Dermietzel, H. Duffy, D. Laird et al., Pannexin channels are not gap junction hemichannels, Channels, vol.5, issue.3, pp.193-197, 2011.
DOI : 10.1126/science.1126241

D. Boassa, C. Ambrosi, F. Qiu, G. Dahl, G. Gaietta et al., Pannexin1 Channels Contain a Glycosylation Site That Targets the Hexamer to the Plasma Membrane, Journal of Biological Chemistry, vol.282, issue.43, pp.31733-31743, 2007.
DOI : 10.1074/jbc.M702422200

S. Penuela, R. Bhalla, X. Gong, K. Cowan, S. Celetti et al., Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins, Journal of Cell Science, vol.120, issue.21, pp.3772-3783, 2007.
DOI : 10.1242/jcs.009514

R. Bruzzone, S. Hormuzdi, M. Barbe, A. Herb, and H. Monyer, Pannexins, a family of gap junction proteins expressed in brain, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13644-13649, 2003.
DOI : 10.1073/pnas.2233464100

M. Barbe, H. Monyer, and R. Bruzzone, Cell-Cell Communication Beyond Connexins: The Pannexin Channels, Physiology, vol.21, issue.2, pp.103-114, 2006.
DOI : 10.1152/physiol.00048.2005

Y. Panchin, I. Kelmanson, M. Matz, K. Lukyanov, N. Usman et al., A ubiquitous family of putative gap junction molecules, Current Biology, vol.10, issue.13, pp.473-477, 2000.
DOI : 10.1016/S0960-9822(00)00576-5

A. Baranova, D. Ivanov, N. Petrash, A. Pestova, M. Skoblov et al., The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins, Genomics, vol.83, issue.4, pp.706-716, 2004.
DOI : 10.1016/j.ygeno.2003.09.025

A. Vogt, S. Hormuzdi, and H. Monyer, Pannexin1 and Pannexin2 expression in the developing and mature rat brain, Molecular Brain Research, vol.141, issue.1, pp.113-120, 2005.
DOI : 10.1016/j.molbrainres.2005.08.002

S. Langlois, X. Xiang, K. Young, B. Cowan, S. Penuela et al., Pannexin 1 and Pannexin 3 Channels Regulate Skeletal Muscle Myoblast Proliferation and Differentiation, Journal of Biological Chemistry, vol.289, issue.44, pp.30717-30731, 2014.
DOI : 10.1074/jbc.M114.572131

S. Celetti, K. Cowan, S. Penuela, Q. Shao, J. Churko et al., Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation, Journal of Cell Science, vol.123, issue.8, pp.1363-1372, 2010.
DOI : 10.1242/jcs.056093

T. Barrett, S. Wilhite, P. Ledoux, C. Evangelista, I. Kim et al., NCBI GEO: archive for functional genomics data sets--update, Nucleic Acids Research, vol.41, issue.D1, pp.991-996, 2013.
DOI : 10.1093/nar/gks1193

L. Bao, S. Locovei, and G. Dahl, Pannexin membrane channels are mechanosensitive conduits for ATP, FEBS Letters, vol.102, issue.1-3, pp.65-68, 2004.
DOI : 10.1016/j.febslet.2004.07.009

F. Chekeni, M. Elliott, J. Sandilos, S. Walk, J. Kinchen et al., Pannexin 1 channels mediate ???find-me??? signal release and membrane permeability during apoptosis, Nature, vol.168, issue.7317, pp.863-867, 2010.
DOI : 10.1038/nature09413

S. Locovei, J. Wang, and G. Dahl, Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium, FEBS Letters, vol.293, issue.1, pp.239-244, 2006.
DOI : 10.1016/j.febslet.2005.12.004

P. Schedin and P. Keely, Mammary Gland ECM Remodeling, Stiffness, and Mechanosignaling in Normal Development and Tumor Progression, Cold Spring Harbor Perspectives in Biology, vol.3, issue.1, pp.1-24, 2011.
DOI : 10.1101/cshperspect.a003228

W. Lee, G. Monteith, and S. Roberts-thomson, Calcium transport and signaling in the mammary gland: Targets for breast cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1765, issue.2, pp.235-255, 2006.
DOI : 10.1016/j.bbcan.2005.12.001

S. Blaug, J. Rymer, S. Jalickee, and S. Miller, P2 purinoceptors regulate calcium-activated chloride and fluid transport in 31EG4 mammary epithelia, AJP: Cell Physiology, vol.284, issue.4, pp.897-909, 2003.
DOI : 10.1152/ajpcell.00238.2002

S. Penuela, J. Kelly, J. Churko, K. Barr, A. Berger et al., Panx1 Regulates Cellular Properties of Keratinocytes and Dermal Fibroblasts in Skin Development and Wound Healing, Journal of Investigative Dermatology, vol.134, issue.7, pp.2026-2035, 2014.
DOI : 10.1038/jid.2014.86

L. Wicki-stordeur, A. Dzugalo, R. Swansburg, J. Suits, and L. Swayne, Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation, Neural Development, vol.7, issue.1, p.22458943, 2012.
DOI : 10.1242/jcs.009514

O. 'brien, J. Martinson, H. Durand-rougely, C. Schedin, and P. , Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution, Development, vol.139, issue.2, pp.269-275, 2012.
DOI : 10.1242/dev.071696

S. Penuela, H. L. Simek, J. Laird, and D. , Pannexin channels and their links to human disease, Biochemical Journal, vol.7, issue.3, pp.371-381, 2014.
DOI : 10.1016/j.neuron.2012.01.019

R. Siegel, K. Miller, and A. Jemal, Cancer statistics, 2015, CA: A Cancer Journal for Clinicians, vol.61, issue.3, pp.5-29, 2015.
DOI : 10.3322/caac.21254

P. Furlow, S. Zhang, T. Soong, N. Halberg, H. Goodarzi et al., Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival, Nature Cell Biology, vol.28, issue.1, pp.943-952, 2015.
DOI : 10.1016/j.cell.2012.10.028

S. Penuela, L. Gyenis, A. Ablack, J. Churko, A. Berger et al., Loss of Pannexin 1 Attenuates Melanoma Progression by Reversion to a Melanocytic Phenotype, Journal of Biological Chemistry, vol.287, issue.34, pp.29184-29193, 2012.
DOI : 10.1074/jbc.M112.377176

C. Lai, J. Bechberger, R. Thompson, B. Macvicar, R. Bruzzone et al., Tumor-Suppressive Effects of Pannexin 1 in C6 Glioma Cells, Cancer Research, vol.67, issue.4, pp.1545-1554, 2007.
DOI : 10.1158/0008-5472.CAN-06-1396

K. Cowan, S. Langlois, S. Penuela, B. Cowan, and D. Laird, Pannexin1 and Pannexin3 Exhibit Distinct Localization Patterns in Human Skin Appendages and are Regulated during Keratinocyte Differentiation and Carcinogenesis, Cell Communication & Adhesion, vol.12, issue.3-4, pp.45-53, 2012.
DOI : 10.1186/1749-8104-7-11

Y. Qu, S. Misaghi, K. Newton, L. Gilmour, S. Louie et al., Pannexin-1 Is Required for ATP Release during Apoptosis but Not for Inflammasome Activation, The Journal of Immunology, vol.186, issue.11, pp.6553-6561, 2011.
DOI : 10.4049/jimmunol.1100478

I. Plante, M. Stewart, and D. Laird, Evaluation of Mammary Gland Development and Function in Mouse Models, Journal of Visualized Experiments, vol.53, issue.53, p.21808224, 2011.
DOI : 10.3791/2828

I. Plante and D. Laird, Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia, Developmental Biology, vol.318, issue.2, pp.312-322, 2008.
DOI : 10.1016/j.ydbio.2008.03.033

M. Stewart, X. Gong, K. Barr, D. Bai, G. Fishman et al., The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice, Biochemical Journal, vol.6, issue.2, pp.401-413, 2013.
DOI : 10.1126/science.7892609

B. Gyorffy, A. Lanczky, A. Eklund, C. Denkert, J. Budczies et al., An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients, Breast Cancer Research and Treatment, vol.7, issue.4, pp.725-731, 2010.
DOI : 10.1007/s10549-009-0674-9

URL : https://hal.archives-ouvertes.fr/hal-00520003

I. Teleki, A. Szasz, M. Maros, B. Gyorffy, J. Kulka et al., Correlations of Differentially Expressed Gap Junction Connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with Breast Cancer Progression and Prognosis, PLoS ONE, vol.27, issue.11, p.25383624, 2014.
DOI : 10.1371/journal.pone.0112541.s001

B. Gyorffy, P. Surowiak, J. Budczies, and A. Lanczky, Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer, PLoS ONE, vol.56, issue.12, p.24367507, 2013.
DOI : 10.1371/journal.pone.0082241.s002

C. Forster, S. Makela, A. Warri, S. Kietz, D. Becker et al., Nonlinear partial differential equations and applications: Involvement of estrogen receptor ?? in terminal differentiation of mammary gland epithelium, Proceedings of the National Academy of Sciences, vol.99, issue.24, pp.15578-15583, 2002.
DOI : 10.1073/pnas.192561299

C. Bry, K. Maass, K. Miyoshi, K. Willecke, T. Ott et al., Loss of connexin 26 in mammary epithelium during early but not during late pregnancy results in unscheduled apoptosis and impaired development, Developmental Biology, vol.267, issue.2, pp.418-429, 2004.
DOI : 10.1016/j.ydbio.2003.11.022

S. Liong and M. Lappas, Endoplasmic Reticulum Stress Is Increased in Adipose Tissue of Women with Gestational Diabetes, PLOS ONE, vol.59, issue.Suppl 2, p.25849717, 2015.
DOI : 10.1371/journal.pone.0122633.t001

P. Pelegrin and A. Surprenant, Pannexin-1 mediates large pore formation and interleukin-1?? release by the ATP-gated P2X7 receptor, The EMBO Journal, vol.312, issue.21, pp.5071-5082, 2006.
DOI : 10.1038/sj.emboj.7601378

A. Lohman, M. Billaud, A. Straub, S. Johnstone, A. Best et al., Expression of Pannexin Isoforms in the Systemic Murine Arterial Network, Journal of Vascular Research, vol.49, issue.5, pp.405-416, 2012.
DOI : 10.1159/000338758

L. Zwierzchowski, D. Kleczkowska, W. Niedbalski, and I. Grochowska, Variation of DNA polymerase activities and DNA synthesis in mouse mammary gland during pregnancy and early lactation, Differentiation, vol.28, issue.2, pp.179-185, 1984.
DOI : 10.1111/j.1432-0436.1984.tb00281.x

H. Traurig, A radioautographic study of cell proliferation in the mammary gland of the pregnant mouse, The Anatomical Record, vol.101, issue.2, pp.239-247, 1967.
DOI : 10.1002/ar.1091590213

M. Gallego, N. Binart, G. Robinson, R. Okagaki, K. Coschigano et al., Prolactin, Growth Hormone, and Epidermal Growth Factor Activate Stat5 in Different Compartments of Mammary Tissue and Exert Different and Overlapping Developmental Effects, Developmental Biology, vol.229, issue.1, pp.163-175, 2001.
DOI : 10.1006/dbio.2000.9961

K. Miyoshi, J. Shillingford, G. Smith, S. Grimm, K. Wagner et al., Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium, The Journal of Cell Biology, vol.261, issue.4, pp.531-542, 2001.
DOI : 10.1083/jcb.10.3.335

S. Li, M. Tomic, and S. Stojilkovic, Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels, General and Comparative Endocrinology, vol.174, issue.2, pp.202-210, 2011.
DOI : 10.1016/j.ygcen.2011.08.019

D. Tong, T. Li, K. Naus, D. Bai, and G. Kidder, In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells, Journal of Cell Science, vol.120, issue.22, pp.4016-4024, 2007.
DOI : 10.1242/jcs.011775

S. Penuela, R. Gehi, and D. Laird, The biochemistry and function of pannexin channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.1, pp.15-22, 2012.
DOI : 10.1016/j.bbamem.2012.01.017

S. Locovei, L. Bao, and G. Dahl, Pannexin 1 in erythrocytes: Function without a gap, Proceedings of the National Academy of Sciences, vol.103, issue.20, pp.7655-7659, 2006.
DOI : 10.1073/pnas.0601037103

K. Enomoto, K. Furuya, S. Yamagishi, T. Oka, and T. Maeno, The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells, Pfl???gers Archiv European Journal of Physiology, vol.288, issue.5-6, pp.533-542, 1994.
DOI : 10.1007/BF00374271

W. Lee, G. Monteith, and S. Roberts-thomson, Calcium transport and signaling in the mammary gland: Targets for breast cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1765, issue.2, pp.235-255, 2006.
DOI : 10.1016/j.bbcan.2005.12.001

J. Monks, D. Rosner, F. Geske, L. Lehman, L. Hanson et al., Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release, Cell Death and Differentiation, vol.12, issue.2, pp.107-114, 2005.
DOI : 10.1038/sj.cdd.4401517

J. Monks, C. Smith-steinhart, E. Kruk, V. Fadok, and P. Henson, Epithelial Cells Remove Apoptotic Epithelial Cells During Post-Lactation Involution of the Mouse Mammary Gland1, Biology of Reproduction, vol.78, issue.4, pp.586-594, 2008.
DOI : 10.1095/biolreprod.107.065045

J. Fitz, Regulation of cellular ATP release, Trans Am Clin Climatol Assoc, vol.118, pp.199-208, 2007.

B. Lehmann, J. Bauer, X. Chen, M. Sanders, A. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, Journal of Clinical Investigation, vol.121, issue.7, pp.2750-2767, 2011.
DOI : 10.1172/JCI45014DS1

A. Prat, J. Parker, O. Karginova, C. Fan, C. Livasy et al., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer, Breast Cancer Research, vol.15, issue.1, pp.10-1186, 2010.
DOI : 10.1038/nm0809-842