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Abstract
Meningococci spread via respiratory droplets, whereas the closely related gonococci are

transmitted sexually. Several outbreaks of invasive meningococcal disease have been

reported in Europe and the United States among men who have sex with men (MSM). We

recently identified an outbreak of serogroup C meningococcal disease among MSM in Ger-

many and France. In this study, genomic and proteomic techniques were used to analyze

the outbreak isolates. In addition, genetically identical urethritis isolates were recovered

from France and Germany and included in the analysis. Genome sequencing revealed that

the isolates from the outbreak among MSM and from urethritis cases belonged to a clade

within clonal complex 11. Proteome analysis showed they expressed nitrite reductase,

enabling anaerobic growth as previously described for gonococci. Invasive isolates from

MSM, but not urethritis isolates, further expressed functional human factor H binding protein

associated with enhanced survival in a newly developed transgenic mouse model express-

ing human factor H, a complement regulatory protein. In conclusion, our data suggest that

urethritis and outbreak isolates followed a joint adaptation route including adaption to the

urogenital tract.

Introduction
Neisseria meningitidis causes severe and life threatening invasive infections that manifest
mainly as meningitis and/or septicemia. The annual incidence of invasive meningococcal
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disease (IMD) varies geographically from 0.3 to 3.37 cases per 100, 000 inhabitants in the
United States and Europe. The Incidence is the highest among infants. Male to female ratio is
close to one [1, 2]. Endogenous and exogenous risk factors for IMD have been described [3].
Meningococci show high genomic plasticity associated with marked genetic diversity. Typing
methods are based on DNA sequencing and cluster meningococcal isolates into several geno-
types (sequence types, ST and clonal complexes, cc) [4]. Meningococci are transmitted via
droplets and colonize the nasopharynx. In contrast, their close relative, the gonococcus (Neis-
seria gonorrhoeae), is transmitted sexually and infects the urogenital tract, with occasional col-
onization of the rectal and pharyngeal mucosa. Case reports of meningococcal urethritis [5]
suggest that meningococci may share urogenital colonization mechanisms with gonococci.
Clusters of IMD among men who have sex with men (MSM) were reported on several occa-
sions [5,6–7]. A recent report of IMD among MSM in Berlin, Germany described the emer-
gence of a particular hyperinvasive genotype, (i.e. serogroup C, PorA type P1.5–1,10–8, FetA
type F3-6 and cc11), associated with high case-fatality [6]. A similar observation was also
reported in France [8]. Furthermore, all isolates displayed a characteristic point mutation in
the fumC gene that is an indicative of the ET-15 clone, [9] a derivative of cc11, which was first
observed in Canada in the 1980s and since then spread globally, causing outbreaks in various
countries [10]. HIV infection was not linked to this outbreak as most of the cases were negative
for HIV [6]. The Berlin cluster occurred simultaneously with IMD cases in MSM in Paris,
France, which were caused by the same genotype C:P1.5–1,10–8:F3-6:cc11:ET-15, and with a
protracted serogroup C outbreak in MSM in New York City [6, 8, 11]. Efficient meningococcal
C vaccination programs were not implemented beforehand in adolescents and young adults in
these countries and vaccine coverage was low among these groups [12]. Therefore, circulation
of serogroup C isolates in young adults was likely as the genotype C:P1.5–1,10–8:F3-6:cc11:ET-
15 is frequent among invasive serogroup C isolates. In addition, the reference laboratories for
meningococci in France and Germany over the years had both received meningococci with the
identical genotype C:P1.5–1,10–8:F3-6:cc11:ET-15 from cases with urethritis/proctitis. An epi-
demiological link of these cases to MSM was not explored, although cases of urethritis have
been reported among MSM [13]. The analysis of urethritis isolates provides the opportunity to
analyze whether similar genetic modifications occurred in urethritis isolates and isolates from
invasive disease in MSM, suggesting that transmission networks were at least partially driven
by sexual contact. Indeed, an increase in the number of sexual partners and higher risk sexual
practices in MSM social networks was suggested to explain an increase in sexually transmitted
infections among MSM observed between 2001 and 2003 [14]. Orogenital and anogenital con-
tacts were postulated to explain anogenital meningococcal infections observed in MSM [15].
The available collection of genetically related strains allowed testing this hypothesis through
genome sequencing, proteome analysis and animal infection models. We therefore conducted
a study to analyze the genetic adaptation associated with the emergence of this outbreak and
urethritis.

Methods
(For full description see the S1 Text).

Ethical statement
Invasive meningococcal isolates were sent to the National Reference Centres for meningococci
in France and Germany as part of national laboratory surveillance systems for invasive menin-
gococcal disease. Animal work in this study was carried out at the Institut Pasteur in strict
accordance with the European Union Directive 2010/63/EU (and its revision 86/609/EEC) on
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the protection of animals used for scientific purposes. The laboratory at the Institut Pasteur has
the administrative authorization for animal experimentation (Permit Number 75–1554) and
the protocol was approved by the Institut Pasteur Review Board that is part of the Regional
Committee of Ethics of Animal Experiments of Paris Region (Permit Number: 99–174). All the
invasive procedures were performed under anesthesia with sodium pentobarbital (Sanofi
Sante. Animale, Libourne, France) and all possible efforts were made to minimize animal suf-
fering by limiting the experiment to 24 hours after infection and by inspecting the conditions
of animal three times during the experiment at 2, 6 and 10 hours after infection.

The animals were euthanatized by injection of high dose of chemical anesthetics (pentobar-
bital) which was performed before blood sampling.

Bacterial strains and typing
Invasive N.meningitidis isolates were sent to the National Reference Centres for meningococci
as part of national laboratory-based surveillance systems for invasive meningococcal disease.
Isolates linked to the MSM community were included as well as the available urethritis and
proctitis isolates showing the same genotype. The latter isolates are not usually part of the sur-
veillance of meningococcal disease (S1 Table). The serogroup was determined by slide aggluti-
nation. Genotyping (multilocus sequence typing [MLST] and antigen typing [porA, fhbp and
fetA]) were performed as previously described [16–21]. Sequence types (STs), clonal complexes
(cc), and antigen types were determined through the meningococcal typing website (http://
neisseria.org/nm/typing/).

Whole genome sequencing, assembly and cgMLST for phylogenomic
analysis
Genomic DNA was extracted and whole-genome sequencing was then performed using Illu-
mina HiSeq 2000 sequencer or by Illumina MiSeq sequencer. After sequencing, the reads were
quality-trimmed and then assembled using the CLC Genomics Workbench software version
6.0 (CLC bio, Aarhus, Denmark). The resulting assembly files were exported as ACE files and
imported into SeqSphere+ software version 2.3 (Ridom GmbH, Münster, Germany). The
assembly contigs together with epidemiologic meta-data were also deposited to the Neisseria
BIGSdb website [22].

A core genome multi-locus sequence typing (cgMLST) target set was determined using all
finished N.meningitidis genomes available in GenBank as of February 2014 (n = 14) [23]. The
genome of strain FAM18 (NC_008767) was used as a reference. Complete sequence for each
gene was analyzed in comparison to the FAM18 reference. The combination of all alleles in
each strain formed an allelic profile. The exported aligned sequences were then imported into
MEGA6 and a neighbor-joining tree was generated with default parameters and the bootstrap
option (with 1.000 replications) turned on [24]. All classical typing results achieved by Sanger
sequencing were confirmed by WGS data analysis [25].

Determination of AniA nitrite reductase activity and growth under
anaerobic conditions in the presence of nitrite
Nitrite reductase activity was monitored by nitrite consumption according to published proto-
cols [26] with slight modifications. For anaerobic growth, meningococcal cultures on sheep
blood agar (bioMérieux) were grown aerobically overnight at 37°C and 5% CO2. Meningococci
that are capable of nitrite respiration grow in a characteristic halo around the nitrite disk, while
meningococci that are incapable of nitrite respiration do not grow.
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Construction, characterization and experimental meningococcal
infection of transgenic mice expressing the human factor H
Transgenic mice expressing the human factor H (a regulatory protein of the complement sys-
tem, S2 Table for primers) were constructed and backcrossed to BLAB/c background. Flow
cytometry was performed as previously described [27] with a FACSCalibur flow cytometer
(BD Biosciences, France) to monitor the activation of complement at the bacterial surface by
detecting the deposition of C3b on bacteria. Detection of fHbp by Western blotting using anti-
fHbp antibodies was performed as previously described [27]. For colony blot analysis, colonies
from GCB plates were transferred to nitrocellulose membrane and revealed using anti-fHbp
antibodies [27].

Proteomic analysis
This approach was used for detecting proteins that are differentially expressed between menin-
gococcal isolates from MSM and those from adolescents of a cluster of cases from non-MSM
subjects in Schwerte, Germany, 2003 [28].

The proteomes of three meningococcal strains (DE12845, DE12939, DE12957) fromMSM
from Berlin and three meningococcal strains (DE9273, DE9301, DE9425) from adolescents of
the cluster in Schwerte, Germany, 2003 [28] were compared by high-sensitivity mass spectrom-
etry as described recently [29]. The protocol included an internal control generated by meta-
bolic labeling of neisserial proteins with 15N. After protein quantification, equal amounts of
14N samples and the 15N labeled reference were combined and subjected to GeLCMS-analyses
as previously described in detail in [30].

Results

Genome sequencing analysis of meningococcal isolates
We first performed a deep genetic analysis on the MSM isolates. The origins of the isolates and
their corresponding clinical presentation and typing are shown in the S1 Table. Genome
sequencing of several invasive isolates from the outbreak among MSM in 2012–2013 and iso-
lates from cases of urethritis/proctitis isolated in 2006–2012 was performed. We analyzed the
phylogenetic relationships between these isolates and other C:P1.5–1,10–8:F3-6:cc11/ET-15
isolates from children and adolescents, which were identified in Germany in 2003 in four Fed-
eral States. The isolates were from sporadic disease and from two clusters (European Nucleo-
tide Archive (ENA) study accession number PRJEB7500) [28]. A core genome multi-locus
sequence typing (cgMLST as designated in the SeqSphere+ software used here) approach was
chosen for genome comparison [31, 32]. Fig 1 shows that the invasive isolates from MSM clus-
tered with urethritis and proctitis strains in a separate branch distinct from other cc11/ET-15
isolates. This finding proved the clonal relationship of the outbreak isolates as well as their sim-
ilarity to urethritis isolates collected in the two countries.

Proteomic analysis of meningococcal isolates
We next used recently published proteomic technology to screen for differentially expressed
proteins [29]. Three invasive cc11/ET-15 isolates each fromMSM in Berlin and from one of
the adolescent clusters unrelated to the MSM community were compared [28]. The mass spec-
trometry based proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [33]. The
dataset ID is PXD001498 http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD000181.
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Among the differentially expressed proteins, copper containing nitrite reductase AniA was
studied further, as it was only expressed in MSM isolates, but not in isolates from adolescents.
AniA is located in the outer membrane of Neisseria, where it is expressed under low-oxic con-
ditions. This permits anaerobic respiration under conditions that gonococci may encounter in
the urethra [34]. In meningococcal, but not in gonococcal strains, the aniA gene frequently

Fig 1. Whole genome sequence based phylogenetic tree. The neighbor-joining tree was calculated from
1,056 concatenated and multiple aligned core genome genes shared by all studied isolates. Numbers at the
branches indicate the percentage of bootstrap support (1,000 replications). Labels in blue represent IMD
isolates in MSM; in red urethritis and proctitis isolates; in green adolescent IMD isolates; and in black FAM18
cc11 and MC58 outgroup [42, 43]. A distance scale-bar is shown at the bottom left.

doi:10.1371/journal.pone.0154047.g001
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harbors a point mutation in a homopolymeric polyA tract resulting in the expression of a non-
functional truncated protein. This suggests that in contrast to gonococci, meningococci do not
necessarily require AniA expression for survival [34,35–36]. The aniA gene was in-frame in all
isolates from IMD in MSM and in all but one urethritis/proctitis isolate. In contrast, aniA was
out-of-frame in classical cc11/ET-15 strains isolated from IMD cases unrelated to the MSM
community (S1 Table). Measurement of the nitrite reductase activity of the meningococcal iso-
lates confirmed the aniA genotype and the results of proteome analysis. All isolates that har-
bored in-frame aniA (MSM/urethritis isolates) were able to reduce nitrite, whereas no activity
was detected in the out-of-frame urethritis isolate or in isolates unrelated to the MSM outbreak
(Fig 2). In addition, we tested the ability of meningococcal isolates to grow under anaerobic
conditions on agar plates in the presence of disks soaked with nitrite. All six tested MSM/ure-
thritis isolates grew under anaerobic conditions except for the one isolate that harbored an out-
of-frame aniA gene. Isolates from cases of IMD unrelated to the MSM community were also
unable to grow under these conditions (S1 Table).

The expression of AniA in meningococcal isolates fromMSM and urethritis cases may
therefore reflect a selection of isolates adapted to anaerobic growth resembling the phenotype

Fig 2. AniA nitrite reductase activity as measured by sodium nitrite consumption. cc11/ET-15 isolates fromMSM (blue), urethritis (red) and
adolescents (green) were investigated. The black curve corresponds to the control (culture medium without NaNO2).

doi:10.1371/journal.pone.0154047.g002
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of gonococci, which are sexually transmitted. Expression of AniA is thought to support gono-
cocci in their survival under anaerobic and acidic pH in the urethra [35].

Impact of the expression of factor H binding protein
The data presented above suggested that the emergence of the isolates from the outbreak
among MSM and from urethritis cases investigated here was associated with AniA expression
providing the potential capacity to survive in the urethra. We investigated genomic typing data
for differences between invasive isolates fromMSM and mucosal isolates from patients with
urethritis or proctitis. Comprehensive genotyping revealed that these isolates shared distinct
alleles of the factor H binding protein (fHbp) gene that were uncommon to other cc11/ET-15
strains (S1 Table). fHbp binds human factor H (hfH), a negative complement regulator, leading
to enhanced bacterial survival in the blood [37]. All urethritis/proctitis isolates, but only a sin-
gle MSM isolate, possessed fhbp allele 669 containing a frame shift mutation that gives rise to a
premature stop codon. Lack of fHbp expression was confirmed in selected isolates by Western
blotting using previously described anti-fHbp antibodies (Fig 3A) [27]. This phenotype again

Fig 3. Impact of fHbp expression of invasive MSM isolates and urethritis isolates onmeningococcal pathogenesis (A) Western blotting analysis to
detect fHbp. Meningococci from IMD cases in MSM expressing functional fHbp and isolates harboring the fhbp allele 669 (with a pre-mature stop codon) were
tested. Meningococcal strain MC58 was used as a positive control (+). (B) Survival of meningococci in transgenic mice expressing human factor H (hfH).
Bacterial counts recovered from blood after intraperitoneal challenge with 5x107 colony forming units of meningococcal isolates from urethritis (red) and MSM
cases (black). A representative experiment with data representing individual mice is shown. Mice infected with isolates fromMSM showed significantly higher
bacterial counts 2, 6 and 24 hours after infection compared to those infected with urethritis isolates (p values derived from a Student´s t test are displayed). (C)
Flow cytometry analysis of C3b surface deposition on (1) meningococci from IMD cases in MSM expressing fHbp and (2) onmeningococci isolated from
urethritis cases not expressing fHbp due to an early stop codon. The X axis represents logarithmic scale binding of C3b expressed as the geometric mean of
fluorescence. The number of events is displayed on the Y axis. Different coloured lines were used to indicate the isolates for better clarity.

doi:10.1371/journal.pone.0154047.g003
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resembles that of gonococci, which harbor a homologue of fHbp that is not expressed on the
surface due to a defective signal sequence or lipid modification motif [38].

Meningococci specifically bind hfH, but not murine fH [39]. Upon binding of fH to fHbp
on the bacterial surface complement activation is downregulated and bacterial survival
enhanced. fH inactivates C3b and inhibits binding of factor B to C3b and hence reduces the
production of C3 convertase [40]. We therefore constructed transgenic mice expressing hfH to
test whether isolates that caused invasive disease in MSM have a survival advantage compared
to urethritis/proctitis isolates due to fHbp expression. Mice were infected via the intraperito-
neal route with invasive isolates fromMSM or with isolates from urethral or anal sites. After 2,
6 and 24 hours of infection, invasive isolates fromMSM showed significantly higher survival in
the blood of infected mice than isolates from urethritis or proctitis (Fig 3B). Human fH binds
to fHbp on the bacterial surface and subsequently inactivates the complement component C3b,
[40] thereby enhancing meningococcal survival. In the mouse infection model, lower C3b
deposition was observed on meningococcal isolates expressing fHbp (fromMSM with IMD)
than on those isolates harbouring fHbp allele 669 with a premature stop codon (urethritis
/proctitis isolates) (Fig 3C). Blood samples from mice infected by urethritis /proctitis isolates
expressing the fHbp allele 669 were plated on GCB medium and colonies (about 5000 colonies
per plate) were transferred onto nitrocellulose membrane by colony blotting for detection by
anti-fHbp antibodies (about 50.000 colonies were screened). No fHbp-positive colonies were
detected suggesting that genotype switches in vivo, if possible, occurs at too low frequency to
be detected. Taken together, these results suggest that invasive isolates fromMSM with func-
tional fHbp expression are more virulent than urethritis/proctitis isolates.

Discussion
Our results demonstrate the power of combining laboratory infection surveillance, genomics
and proteomics technologies and transgenic animal models to unravel the molecular basis of
meningococcal evolution that lead to short-term changes in the epidemiology of meningococ-
cal disease. Our data also suggest that genomic plasticity of meningococci permits a rapid gen-
eration of variants with increased fitness for alternative/novel niches. The AniA+, fHbp-

phenotype seems to be associated with urethral and rectal colonization, leading to the clinical
manifestation of urethritis/proctitis as well as the capacity for direct sexual transmission. These
findings further highlight the link between metabolic processes and virulence.

Our finding that cc11/ET-15 meningococci adapted to a gonococcus-like lifestyle suggests
that the variant may be widely distributed in the MSM community. This should be further inves-
tigated by meningococci C carriage studies in MSM. As suggested by our results, reversion to a
hypervirulent phenotype (AniA+, fHbp+) is possible through the reacquisition of functional fHbp
that enhances bacterial survival in the blood. The spontaneous reversion to fHbp+ state may
occur but at low frequency (less than 5x10-4). Alternatively, transformation and recombination
during mixed carriage and/or mixed urethral infection may be responsible for this reversion [15].

The impact of the acquired capacity for sexual transmission on meningococcal evolution
remains to be followed. If persistent wide-spread transmission in the MSM community is con-
firmed, time-limited vaccination strategy specifically targeting MSM implemented thus far
mainly in areas affected by the outbreaks should be reconsidered [11, 41], since more wide-
spread vaccination of MSM could limit international spread in the MSM community.
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