Aerobic sludge granulation in a Reverse Flow Baffled Reactor (RFBR) operated in continuous-flow mode for wastewater treatment

Abstract : A novel Reverse Flow Baffled Reactor (RFBR) was constructed to achieve aerobic granulation in continuous-flow process in order to treat the high quantity of influent wastewater. Municipal wastewater was fed to a 120 L reactor and successfully produced aerobic granules revealing a sludge volume index (SVI) of 33 mL/g. Aerobic granules possessed higher extracellular polymeric substances (EPS) content than seed sludge. The protein/polysaccharide (PN/PS) ratio in the EPS was determined to be about 10:1. Bacterial community analysis revealed that most of the species (Bacteroidetes, Nitrospira and Proteobacteria) found in the seed sludge were preserved in the reactor, except Pedobacter species that was washed out from the reactor. Moreover, different bacterial species were identified in RFBR and SBR (sequencing batch reactor) granules due to different process and operational parameters. Presence of Fe, Ca, Al, Si and P in wastewater were aggregated in granules (acted as a core) and enhanced the granulation. However, the RFBR was operated in periodic feast-famine condition, short settling time, high height/diameter (H/D) ratio, and without sludge return pump, which led to successful granulation in continuous-flow mode.
Type de document :
Article dans une revue
Separation and Purification Technology, Elsevier, 2015, 149, pp.437-444. 〈10.1016/j.seppur.2015.04.045〉
Liste complète des métadonnées

https://hal-riip.archives-ouvertes.fr/pasteur-01352189
Contributeur : Michel Courcelles <>
Soumis le : vendredi 5 août 2016 - 18:29:11
Dernière modification le : lundi 5 février 2018 - 15:22:10

Identifiants

Collections

Citation

Jun Li, Ang Cai, Libin Ding, Balasubramanian Sellamuthu, Jonathan Perreault. Aerobic sludge granulation in a Reverse Flow Baffled Reactor (RFBR) operated in continuous-flow mode for wastewater treatment. Separation and Purification Technology, Elsevier, 2015, 149, pp.437-444. 〈10.1016/j.seppur.2015.04.045〉. 〈pasteur-01352189〉

Partager

Métriques

Consultations de la notice

25