F. Azuaje, Clustering-based approaches to discovering and visualising microarray data patterns, Briefings in Bioinformatics, vol.4, issue.1, pp.31-42, 2003.
DOI : 10.1093/bib/4.1.31

URL : http://bib.oxfordjournals.org/cgi/content/short/4/1/31

T. Beissbarth, [18] Interpreting Experimental Results Using Gene Ontologies, Methods in Enzymology, vol.411, pp.340-352, 2006.
DOI : 10.1016/S0076-6879(06)11018-6

M. O. Brown, M. B. Eisen, P. T. Spellman, and D. Botstein, From patterns to pathways: gene expression data analysis come of age, PNAS, vol.95, pp.14863-14868, 1998.

D. Chaussabel, R. T. Semnani, M. A. Mcdowell, D. Sacks, A. Sher et al., Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites, Blood, vol.102, issue.2, pp.672-681, 2003.
DOI : 10.1182/blood-2002-10-3232

S. Draghici, P. Khatri, P. Bhavsar, A. Shah, S. A. Krawetz et al., Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate, Nucleic Acids Research, vol.31, issue.13, pp.3775-3781, 2003.
DOI : 10.1093/nar/gkg624

A. Ghouila, S. Ben-yahia, D. Malouche, and S. Abdelhak, Multi-SOM: a novel unsupervised classification approach for biological data, Proceedings of la conference francophone d'apprentissage (CAP'07), pp.203-218, 2007.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-537, 1999.
DOI : 10.1126/science.286.5439.531

M. A. Harris, The Gene Ontology (GO) database and informatics resource, Nucleic Acids Research, vol.32, pp.258-261, 2004.

J. Herrero, A. Valencia, and J. Dopazo, A hierarchical unsupervised growing neural network for clustering gene expression patterns, Bioinformatics, vol.17, issue.2, pp.126-136, 2000.
DOI : 10.1093/bioinformatics/17.2.126

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.323-364, 1999.
DOI : 10.1145/331499.331504

S. Kaski, Data exploration using Self Organizing Maps, 1997.

P. Khatri and S. Draghici, Ontological analysis of gene expression data: current tools, limitations, and open problems, Bioinformatics, vol.21, issue.18, pp.3587-3595, 2005.
DOI : 10.1093/bioinformatics/bti565

T. Kohonen, The basic SOM In: Self-Organizing Maps. Springer Series in Information Sciences, chapter 3, pp.105-176, 2001.

J. Quackenbush, Computational analysis of cDNA microarray data, Nature Reviews Genetics, vol.6, pp.418-428, 2001.

J. Quackenbush, Microarray Analysis and Tumor Classification, New England Journal of Medicine, vol.354, issue.23, pp.2463-2472, 2006.
DOI : 10.1056/NEJMra042342

A. Rauber, D. Merkl, and M. Dittenbach, The growing hierarchical self-organizing map, Proceedings of the International Joint Conference on Neural Networks, 2000.

S. Rovetta and F. Masulli, Shared farthest neighbor approach to clustering of high dimensionality, low cardinality data, Pattern Recognition, vol.39, issue.12, pp.2415-2425, 2006.
DOI : 10.1016/j.patcog.2006.06.021

J. Shen, S. I. Chang, E. S. Lee, Y. Deng, and S. J. Brown, Determination of cluster number in clustering microarray data, Applied Mathematics and Computation, vol.169, issue.2, pp.1172-1185, 2005.
DOI : 10.1016/j.amc.2004.10.076

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church, Systematic determination of genetic network architecture, Nature Genetics, vol.22, pp.281-285, 1999.

J. Vesanto and E. Alhoniemi, Clustering of the self-organizing map, IEEE Transactions on Neural Networks, vol.11, issue.3, pp.586-600, 2000.
DOI : 10.1109/72.846731

S. Wu and T. Chow, Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density, Pattern Recognition, vol.37, issue.2, pp.175-188, 2004.
DOI : 10.1016/S0031-3203(03)00237-1