R. B. Lorsbach, J. Moore, S. Mathew, S. C. Raimondi, S. T. Mukatira et al., TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23), Leukemia, vol.17, issue.3, pp.637-641, 2003.
DOI : 10.1038/sj.leu.2402834

R. Ono, T. Taki, T. Taketani, M. Taniwaki, H. Kobayashi et al., LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23), Cancer Res, pp.62-4075, 2002.

O. Abdel-wahab, A. Mullally, C. Hedvat, G. Garcia-manero, J. Patel et al., Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies, Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies, pp.144-147, 2009.
DOI : 10.1182/blood-2009-03-210039

S. M. Langemeijer, R. P. Kuiper, M. Berends, R. Knops, M. G. Aslanyan et al., P052 Acquired mutations in TET2 are common in myelodysplastic syndromes, Leukemia Research, vol.33, issue.7, pp.41-838, 2009.
DOI : 10.1016/S0145-2126(09)70132-8

C. Quivoron, L. Couronne, V. D. Valle, C. K. Lopez, I. Plo et al., TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is??a Recurrent Event during Human Lymphomagenesis, Cancer Cell, vol.20, issue.1, pp.25-38, 2011.
DOI : 10.1016/j.ccr.2011.06.003

Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang et al., Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA, Science, vol.333, issue.6047, pp.1303-1307, 2011.
DOI : 10.1126/science.1210944

S. Ito, A. C. D-'alessio, O. V. Taranova, K. Hong, L. C. Sowers et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.22, issue.7310, pp.1129-1133, 2010.
DOI : 10.1038/nature09303

S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins et al., Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine, Science, vol.333, issue.6047, pp.1300-1303, 2011.
DOI : 10.1126/science.1210597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

T. Pfaffeneder, F. Spada, M. Wagner, C. Brandmayr, S. K. Laube et al., Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA, Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA, pp.574-581, 2014.
DOI : 10.1016/j.cell.2012.04.027

M. R. Rambow, T. Bassi, M. Bruno, and . Fanciulli, Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair, Cell, vol.146, issue.1, pp.67-79, 2011.

S. Morera, I. Grin, A. Vigouroux, S. Couve, V. Henriot et al., Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA, Nucleic Acids Research, vol.40, issue.19, pp.40-9917, 2012.
DOI : 10.1093/nar/gks714

C. S. Nabel, H. Jia, Y. Ye, L. Shen, H. L. Goldschmidt et al., AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation, Nature Chemical Biology, vol.50, issue.9, pp.751-758, 2012.
DOI : 10.1038/nchembio.1042

G. Rangam, K. M. Schmitz, A. J. Cobb, and S. K. Petersen-mahrt, AID Enzymatic Activity Is Inversely Proportional to the Size of Cytosine C5 Orbital Cloud, PLoS ONE, vol.7, issue.8, p.43279, 2012.
DOI : 10.1371/journal.pone.0043279.t001

H. E. Krokan and M. Bjoras, Base Excision Repair, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, 2013.
DOI : 10.1101/cshperspect.a012583

K. Williams, J. Christensen, M. T. Pedersen, J. V. Johansen, P. A. Cloos et al., TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.38, issue.7347, pp.343-348, 2011.
DOI : 10.1038/nature10066

H. Wu, A. C. D-'alessio, S. Ito, K. Xia, Z. Wang et al., Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells, Nature, vol.18, issue.7347, pp.389-393, 2011.
DOI : 10.1038/nature09934

M. Bachman, S. Uribe-lewis, X. Yang, M. Williams, A. Murrell et al., 5-Hydroxymethylcytosine is a predominantly stable DNA modification, Nature Chemistry, vol.57, issue.12, pp.1049-1055, 2014.
DOI : 10.1038/nature06968

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382525

C. Lafaye, E. Barbier, A. Miscioscia, C. Saint-pierre, A. Kraut et al., DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation, Biochemical and Biophysical Research Communications, vol.446, issue.1, pp.341-346, 2014.
DOI : 10.1016/j.bbrc.2014.02.122

W. A. Pastor, L. Aravind, and A. Rao, TETonic shift: biological roles of TET proteins in DNA demethylation and transcription, Nature Reviews Molecular Cell Biology, vol.293, issue.6, pp.341-356, 2013.
DOI : 10.1038/nrm3589

C. G. Spruijt, F. Gnerlich, A. H. Smits, T. Pfaffeneder, P. W. Jansen et al., Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives, Cell, vol.152, issue.5, pp.1146-1159, 2013.
DOI : 10.1016/j.cell.2013.02.004

URL : http://doi.org/10.1016/j.cell.2013.02.004

H. Wu and Y. Zhang, Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions, Cell, vol.156, issue.1-2, pp.45-68, 2014.
DOI : 10.1016/j.cell.2013.12.019

URL : http://doi.org/10.1016/j.cell.2013.12.019

Q. Chen, Y. Chen, C. Bian, R. Fujiki, and X. Yu, TET2 promotes histone O-GlcNAcylation during gene transcription, Nature, vol.13, issue.7433, pp.561-564, 2013.
DOI : 10.1089/scd.2010.0072

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684361

M. M. Dawlaty, A. Breiling, T. Le, M. I. Barrasa, G. Raddatz et al., Loss of Tet Enzymes Compromises Proper Differentiation of Embryonic Stem Cells, Loss of Tet enzymes compromises proper differentiation of embryonic stem cells, pp.102-111, 2014.
DOI : 10.1016/j.devcel.2014.03.003

]. S. Kriaucionis and N. Heintz, The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain, Science, vol.324, issue.5929, pp.929-930, 2009.
DOI : 10.1126/science.1169786

A. Maiti and A. C. Drohat, Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine: POTENTIAL IMPLICATIONS FOR ACTIVE DEMETHYLATION OF CpG SITES, Journal of Biological Chemistry, vol.286, issue.41, pp.35334-35338, 2011.
DOI : 10.1074/jbc.C111.284620

D. Cortazar, C. Kunz, J. Selfridge, T. Lettieri, Y. Saito et al., Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability, Nature, vol.37, issue.7334, pp.419-423, 2011.
DOI : 10.1038/nature09672

M. Tini, A. Benecke, S. J. Um, J. Torchia, R. M. Evans et al., Association of CBP/p300 Acetylase and Thymine DNA Glycosylase Links DNA Repair and Transcription, Molecular Cell, vol.9, issue.2, pp.265-277, 2002.
DOI : 10.1016/S1097-2765(02)00453-7

R. L. Capizzi and J. W. Jameson, A table for the estimation of the spontaneous mutations rate of cells in culture, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.17, issue.1, pp.147-148, 1973.
DOI : 10.1016/0027-5107(73)90265-0

S. E. Luria and M. Delbruck, Mutations of bacteria from virus sensitivity to virus resistance, Genetics, vol.28, issue.6, pp.491-511, 1943.

C. Jin, T. Qin, M. C. Barton, J. Jelinek, and J. J. Issa, Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells, Epigenetics, vol.35, issue.11, p.0, 2016.
DOI : 10.1182/blood-2007-11-126227

G. R. Kafer, X. Li, T. Horii, I. Suetake, S. Tajima et al., 5-Hydroxymethylcytosine Marks Sites of DNA Damage and Promotes Genome Stability, Cell Reports, vol.14, issue.6, 2016.
DOI : 10.1016/j.celrep.2016.01.035

U. Hardeland, C. Kunz, F. Focke, M. Szadkowski, and P. Schar, Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2, Nucleic Acids Research, vol.35, issue.11, pp.3859-3867, 2007.
DOI : 10.1093/nar/gkm337

T. Nakatani, K. Yamagata, T. Kimura, M. Oda, H. Nakashima et al., Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced gammaH2AX accumulation, EMBO Rep, 2015.
DOI : 10.15252/embr.201439427

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428038

F. Gaudet, J. G. Hodgson, A. Eden, L. Jackson-grusby, J. Dausman et al., Induction of Tumors in Mice by Genomic Hypomethylation, Science, vol.300, issue.5618, pp.489-492, 2003.
DOI : 10.1126/science.1083558

H. Kamiya, H. Tsuchiya, N. Karino, Y. Ueno, A. Matsuda et al., Mutagenicity of 5-Formylcytosine, an Oxidation Product of 5-Methylcytosine, in DNA in Mammalian Cells, Journal of Biochemistry, vol.132, issue.4, pp.551-555, 2002.
DOI : 10.1093/oxfordjournals.jbchem.a003256

X. W. Xing, Y. L. Liu, M. Vargas, Y. Wang, Y. Q. Feng et al., Mutagenic and Cytotoxic Properties of Oxidation Products of 5-Methylcytosine Revealed by Next-Generation Sequencing, PLoS ONE, vol.328, issue.9, p.72993, 2013.
DOI : 10.1371/journal.pone.0072993.s005

A. R. Weber, C. Krawczyk, A. B. Robertson, A. Kusnierczyk, C. B. Vagbo et al., Biochemical reconstitution of TET1???TDG???BER-dependent active DNA demethylation reveals a highly coordinated mechanism, Nature Communications, vol.15, p.10806, 2016.
DOI : 10.1371/journal.pbio.1000091

P. Vasovcak, A. Krepelova, M. Menigatti, A. Puchmajerova, P. Skapa et al., Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency, DNA Repair, vol.11, issue.7, pp.616-623, 2012.
DOI : 10.1016/j.dnarep.2012.04.004