Smart Homes and Sensors for Surveillance and Preventive Education at Home: Example of Obesity

Abstract : (1) Background: The aim of this paper is to show that e-health tools like smart homes allow the personalization of the surveillance and preventive education of chronic patients, such as obese persons, in order to maintain a comfortable and preventive lifestyle at home. (2) Technologies and methods: Several types of sensors allow coaching the patient at home, e.g., the sensors recording the activity and monitoring the physiology of the person. All of this information serves to personalize serious games dedicated to preventive education, for example in nutrition and vision. (3) Results: We built a system of personalized preventive education at home based on serious games, derived from the feedback information they provide through a monitoring system. Therefore, it is possible to define (after clustering and personalized calibration) from the at home surveillance of chronic patients different comfort zones where their behavior can be estimated as normal or abnormal and, then, to adapt both alarm levels for surveillance and education programs for prevention, the chosen example of application being obesity.
Type de document :
Article dans une revue
Aslib Information, London : Aslib, 2016, 7, pp.50 - 50. 〈10.3390/info7030050〉
Liste complète des métadonnées

Littérature citée [141 références]  Voir  Masquer  Télécharger

https://hal-riip.archives-ouvertes.fr/pasteur-01452816
Contributeur : Institut Pasteur Tunis <>
Soumis le : jeudi 2 février 2017 - 11:43:01
Dernière modification le : lundi 8 octobre 2018 - 17:44:08

Fichier

Smart Homes.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Jacques Demongeot, Adrien Elena, Mariem Jelassi, Slimane Ben Miled, Narjès Bellamine Ben Saoud, et al.. Smart Homes and Sensors for Surveillance and Preventive Education at Home: Example of Obesity. Aslib Information, London : Aslib, 2016, 7, pp.50 - 50. 〈10.3390/info7030050〉. 〈pasteur-01452816〉

Partager

Métriques

Consultations de la notice

156

Téléchargements de fichiers

64