F. Toledo and G. Wahl, Regulating the p53 pathway: in vitro hypotheses, in vivo veritas, Nature Reviews Cancer, vol.55, issue.12, pp.909-923, 2006.
DOI : 10.1002/gcc.20310

K. Vousden and C. Prives, Blinded by the Light: The Growing Complexity of p53, Cell, vol.137, issue.3, pp.413-431, 2009.
DOI : 10.1016/j.cell.2009.04.037

L. Vassilev, B. Vu, B. Graves, D. Carvajal, F. Podlaski et al., In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2, Science, vol.303, issue.5659, pp.844-848, 2004.
DOI : 10.1126/science.1092472

Q. Ding, Z. Zhang, J. Liu, N. Jiang, J. Zhang et al., Discovery of RG7388, a Potent and Selective p53???MDM2 Inhibitor in Clinical Development, Journal of Medicinal Chemistry, vol.56, issue.14, pp.5979-5983, 2013.
DOI : 10.1021/jm400487c

K. Kojima, M. Konopleva, I. Samudio, M. Shikami, M. Cabreira-hansen et al., MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy, Blood, vol.106, issue.9, pp.3150-3159, 2005.
DOI : 10.1182/blood-2005-02-0553

I. Ray-coquard, J. Blay, A. Italiano, L. Cesne, A. Penel et al., Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study, The Lancet Oncology, vol.13, issue.11, pp.1133-1140, 2012.
DOI : 10.1016/S1470-2045(12)70474-6

C. Tovar, B. Graves, K. Packman, Z. Filipovic, B. Higgins et al., MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models, Cancer Research, vol.73, issue.8, pp.2587-2597, 2013.
DOI : 10.1158/0008-5472.CAN-12-2807

C. Iancu-rubin, G. Mosoyan, K. Glenn, R. Gordon, G. Nichols et al., Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis, Experimental Hematology, vol.42, issue.2, pp.137-145, 2014.
DOI : 10.1016/j.exphem.2013.11.012

S. Wang, W. Sun, Y. Zhao, D. Mceachern, I. Meaux et al., SAR405838: An Optimized Inhibitor of MDM2-p53 Interaction That Induces Complete and Durable Tumor Regression, Cancer Research, vol.74, issue.20, pp.5855-5865, 2014.
DOI : 10.1158/0008-5472.CAN-14-0799

D. Bluteau, L. Lordier, D. Stefano, A. Chang, Y. Raslova et al., Regulation of megakaryocyte maturation and platelet formation, Journal of Thrombosis and Haemostasis, vol.113, issue.Suppl. 1, pp.227-234, 2009.
DOI : 10.1111/j.1538-7836.2009.03398.x

V. Deutsch and A. Tomer, Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside, British Journal of Haematology, vol.379, issue.Suppl. 1, 2013.
DOI : 10.1111/bjh.12328

A. Geddis and K. Kaushansky, Endomitotic Megakaryocytes form a Midzone in Anaphase but Have a Deficiency in Cleavage Furrow Formation, Cell Cycle, vol.5, issue.5, pp.538-545, 2006.
DOI : 10.4161/cc.5.5.2537

L. Lordier, A. Jalil, F. Aurade, F. Larbret, J. Larghero et al., Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling, Blood, vol.112, issue.8, pp.3164-3174, 2008.
DOI : 10.1182/blood-2008-03-144956

L. Lordier, J. Pan, V. Naim, A. Jalil, I. Badirou et al., Presence of a defect in karyokinesis during megakaryocyte endomitosis, Cell Cycle, vol.91, issue.23, pp.4385-4389, 2012.
DOI : 10.1073/pnas.0610163104

J. Zimmet and K. Ravid, Polyploidy, Experimental Hematology, vol.28, issue.1, pp.3-16, 2000.
DOI : 10.1016/S0301-472X(99)00124-1

K. Ravid, J. Lu, J. Zimmet, and M. Jones, Roads to polyploidy: The megakaryocyte example, Journal of Cellular Physiology, vol.16, issue.1, pp.7-20, 2002.
DOI : 10.1002/jcp.10035

N. Sher, V. Stetina, J. Bell, G. Matsuura, S. Ravid et al., Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells Megakaryocyte polyploidization is associated with a functional gene amplification, Proc Natl Acad Sci Blood, vol.101, pp.541-544, 2003.

E. Josefsson, C. James, K. Henley, M. Debrincat, K. Rogers et al., Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. The Journal of experimental medicine, pp.2017-2031, 2011.

G. Zauli, M. Vitale, E. Falcieri, D. Gibellini, A. Bassini et al., In vitro senescence and apoptotic cell death of human megakaryocytes, Blood, vol.90, pp.2234-2243, 1997.

S. Shangary, D. Qin, D. Mceachern, M. Liu, R. Miller et al., Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition, Proceedings of the National Academy of Sciences, vol.105, issue.10, pp.3933-3938, 2008.
DOI : 10.1073/pnas.0708917105

J. Bussel, The new thrombopoietic agenda: Impact on leukemias and MDS, Best Practice & Research Clinical Haematology, vol.27, issue.3-4, pp.288-292, 2014.
DOI : 10.1016/j.beha.2014.10.012

J. Bussel, D. Kuter, J. George, R. Mcmillan, L. Aledort et al., AMG 531, a Thrombopoiesis-Stimulating Protein, for Chronic ITP, New England Journal of Medicine, vol.355, issue.16, pp.1672-1681, 2006.
DOI : 10.1056/NEJMoa054626

A. Ali, O. Bluteau, K. Messaoudi, A. Palazzo, S. Boukour et al., Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms, Cell Death and Disease, vol.91, issue.7, p.738, 2013.
DOI : 10.1016/j.dnarep.2011.07.003

P. Apostolidis, S. Lindsey, W. Miller, and E. Papoutsakis, Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation, Physiological Genomics, vol.44, issue.12, pp.638-650, 2012.
DOI : 10.1152/physiolgenomics.00028.2012

P. Apostolidis, D. Woulfe, M. Chavez, W. Miller, and E. Papoutsakis, Role of tumor suppressor p53 in megakaryopoiesis and platelet function, Experimental Hematology, vol.40, issue.2, pp.131-142, 2012.
DOI : 10.1016/j.exphem.2011.10.006

M. Maetens, G. Doumont, S. Clercq, S. Francoz, P. Froment et al., Distinct roles of Mdm2 and Mdm4 in red cell production, Blood, vol.109, issue.6, pp.2630-2633, 2007.
DOI : 10.1182/blood-2006-03-013656

S. Dutt, A. Narla, K. Lin, A. Mullally, N. Abayasekara et al., Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells, Blood, vol.117, issue.9, pp.2567-2576, 2011.
DOI : 10.1182/blood-2010-07-295238

R. Komrokji, E. Padron, B. Ebert, and A. List, Deletion 5q MDS: Molecular and therapeutic implications, Best Practice & Research Clinical Haematology, vol.26, issue.4, pp.365-375, 2013.
DOI : 10.1016/j.beha.2013.10.013

C. Sieff, J. Yang, L. Merida-long, and H. Lodish, Pathogenesis of the erythroid failure in Diamond Blackfan anaemia, British Journal of Haematology, vol.23, issue.4, pp.611-622, 2010.
DOI : 10.1111/j.1365-2141.2009.07993.x

N. Debili, L. Coulombel, L. Croisille, A. Katz, J. Guichard et al., Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow, Blood, vol.88, pp.1284-1296, 1996.

G. Bommer, I. Gerin, Y. Feng, A. Kaczorowski, R. Kuick et al., p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes, Current Biology, vol.17, issue.15, pp.1298-1307, 2007.
DOI : 10.1016/j.cub.2007.06.068

Y. Chang, F. Aurade, F. Larbret, Y. Zhang, L. Couedic et al., Proplatelet formation is regulated by the Rho/ROCK pathway, Blood, vol.109, issue.10, pp.4229-4236, 2007.
DOI : 10.1182/blood-2006-04-020024