M. Barrett and S. Croft, Management of trypanosomiasis and leishmaniasis, British Medical Bulletin, vol.104, issue.1, pp.175-96, 2012.
DOI : 10.1093/bmb/lds031

URL : https://academic.oup.com/bmb/article-pdf/104/1/175/935791/lds031.pdf

C. Gadelha, J. Holden, H. Allison, and M. Field, Specializations in a successful parasite: What makes the bloodstream-form African trypanosome so deadly?, Molecular and Biochemical Parasitology, vol.179, issue.2, pp.51-58, 2011.
DOI : 10.1016/j.molbiopara.2011.06.006

F. Nagajyothi, F. Machado, B. Burleigh, L. Jelicks, P. Scherer et al., Mechanisms of Trypanosoma cruzi persistence in Chagas disease, Cellular Microbiology, vol.180, issue.5, pp.634-643, 2012.
DOI : 10.1086/314889

L. Filardi and Z. Brener, Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.81, issue.5, pp.755-759, 1987.
DOI : 10.1016/0035-9203(87)90020-4

S. Croft, S. Sundar, and A. Fairlamb, Drug Resistance in Leishmaniasis, Clinical Microbiology Reviews, vol.19, issue.1, pp.111-126, 2006.
DOI : 10.1128/CMR.19.1.111-126.2006

F. Graf, P. Ludin, T. Wenzler, M. Kaiser, R. Brun et al., Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol, PLoS Neglected Tropical Diseases, vol.75, issue.10, p.24130910, 2013.
DOI : 10.1371/journal.pntd.0002475.s002

M. Stewart, R. Burchmore, C. Clucas, C. Hertz-fowler, and K. Brooks, Multiple Genetic Mechanisms Lead to Loss of Functional TbAT1 Expression in Drug-Resistant Trypanosomes, Eukaryotic Cell, vol.9, issue.2, pp.336-343, 2010.
DOI : 10.1128/EC.00200-09

S. Patterson and S. Wyllie, Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects, Trends in Parasitology, vol.30, issue.6, pp.289-298, 2014.
DOI : 10.1016/j.pt.2014.04.003

M. Balasegaram, S. Harris, F. Checchi, S. Ghorashian, C. Hamel et al., Melarsoprol versus eflornithine for treating late-stage Gambian trypanosomiasis in the Republic of Congo, Bulletin of the World Health Organization, vol.84, issue.10, pp.783-791, 2006.
DOI : 10.2471/BLT.06.031955

M. Berriman, E. Ghedin, C. Hertz-fowler, G. Blandin, H. Renauld et al., The Genome of the African Trypanosome Trypanosoma brucei, Science, vol.309, issue.5733, pp.416-422, 2005.
DOI : 10.1126/science.1112642

N. El-sayed, P. Myler, D. Bartholomeu, D. Nilsson, G. Aggarwal et al., The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease, Science, vol.309, issue.5733, pp.409-415, 2005.
DOI : 10.1126/science.1112631

A. Ivens, C. Peacock, E. Worthey, L. Murphy, G. Aggarwal et al., The Genome of the Kinetoplastid Parasite, Leishmania major, Science, vol.309, issue.5733, pp.436-442, 2005.
DOI : 10.1126/science.1112680

R. Krauth-siegel and M. Comini, Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.11, pp.1236-1248, 2008.
DOI : 10.1016/j.bbagen.2008.03.006

B. Manta, M. Comini, A. Medeiros, M. Hugo, M. Trujillo et al., Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.5, pp.3199-3216, 2013.
DOI : 10.1016/j.bbagen.2013.01.013

URL : https://hal.archives-ouvertes.fr/pasteur-00847176

M. Comini, S. Guerrero, S. Haile, U. Menge, H. Lünsdorf et al., Valdiation of Trypanosoma brucei trypanothione synthetase as drug target, Free Radical Biology and Medicine, vol.36, issue.10, pp.1289-1302, 2004.
DOI : 10.1016/j.freeradbiomed.2004.02.008

S. Wyllie, S. Oza, S. Patterson, D. Spinks, S. Thompson et al., Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods, Mol Microbiol, vol.74, p.19558432, 2009.

L. Torrie, S. Wyllie, D. Spinks, S. Oza, S. Thompson et al., Chemical Validation of Trypanothione Synthetase, Journal of Biological Chemistry, vol.286, issue.52, pp.36137-36145, 2009.
DOI : 10.1038/nchembio.118

URL : http://www.jbc.org/content/284/52/36137.full.pdf

D. Spinks, L. Torrie, S. Thompson, J. Harrison, J. Frearson et al., Design, Synthesis and Biological Evaluation of Trypanosoma brucei Trypanothione Synthetase Inhibitors, ChemMedChem, vol.32, issue.1, pp.95-106, 2012.
DOI : 10.1248/cpb.32.3252

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320663

A. Sousa, A. Gomes-alves, D. Benítez, M. Comini, L. Flohé et al., Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum, Free Radical Biology and Medicine, vol.73, pp.229-238, 2014.
DOI : 10.1016/j.freeradbiomed.2014.05.007

P. Fyfe, S. Oza, A. Fairlamb, and W. Hunter, Trypanothione Synthetase-Amidase Structure Reveals a Basis for Regulation of Conflicting Synthetic and Hydrolytic Activities, Journal of Biological Chemistry, vol.244, issue.25, pp.17672-17680, 2008.
DOI : 10.1107/S1744309106014849

V. Olin-sandoval, Z. González-chávez, M. Berzunza-cruz, I. Martínez, R. Jasso-chávez et al., Drug target validation of the trypanothione pathway enzymes through metabolic modelling, FEBS Journal, vol.109, issue.10, pp.1811-1833, 2012.
DOI : 10.1016/S0166-6851(00)00234-6

M. Comini, U. Menge, J. Wissing, and L. Flohé, Revisited, Journal of Biological Chemistry, vol.265, issue.8, pp.6850-6860, 2005.
DOI : 10.1016/S0969-2126(99)80011-2

A. Leroux, J. Haanstra, B. Bakker, and R. Krauth-siegel, Trypanothione Synthetase by Kinetic Analysis and Computational Modeling, Journal of Biological Chemistry, vol.1780, issue.33, pp.23751-23764, 2013.
DOI : 10.1038/sj.emboj.7601440

URL : http://www.jbc.org/content/288/33/23751.full.pdf

S. Oza, M. Shaw, S. Wyllie, and A. Fairlamb, Trypanothione biosynthesis in Leishmania major, Molecular and Biochemical Parasitology, vol.139, issue.1, pp.107-116, 2005.
DOI : 10.1016/j.molbiopara.2004.10.004

S. Oza, M. Ariyanayagam, N. Aitcheson, and A. Fairlamb, Properties of trypanothione synthetase from Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.131, issue.1, pp.25-33, 2003.
DOI : 10.1016/S0166-6851(03)00176-2

D. Craecker, S. Verbruggen, C. Rajan, P. Smith, K. Haemers et al., Characterization of the peptide substrate specificity of glutathionylspermidine synthetase from Crithidia fasciculata, Molecular and Biochemical Parasitology, vol.84, issue.1, pp.25-32, 1997.
DOI : 10.1016/S0166-6851(96)02778-8

C. Verbruggen, D. Craecker, S. Rajan, P. Jiago, X. Borloo et al., Phosphonic acid and phosphinic acid tripeptides as inhibitors of glutathionylspermidine synthetase, Bioorganic & Medicinal Chemistry Letters, vol.6, issue.3, pp.253-258, 1996.
DOI : 10.1016/0960-894X(96)00001-7

D. Kwon, C. Lin, S. Chen, J. Coward, C. Walsh et al., into Autonomously Folding and Functional Synthetase and Amidase Domains, Journal of Biological Chemistry, vol.265, issue.4, pp.2429-2436, 1997.
DOI : 10.1074/jbc.270.32.18831

C. Lin, S. Chen, D. Kwon, J. Coward, and C. Walsh, Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase, Chemistry & Biology, vol.4, issue.11, pp.859-866, 1997.
DOI : 10.1016/S1074-5521(97)90118-6

S. Chen, C. Lin, C. Walsh, and J. Coward, Novel inhibitors of trypanothione biosynthesis: Synthesis and evaluation of a phosphinate analog of glutathionyl spermidine (GSP), a potent, slow-binding inhibitor of GSP synthetase, Bioorganic & Medicinal Chemistry Letters, vol.7, issue.5, pp.505-510, 1997.
DOI : 10.1016/S0960-894X(97)00061-9

K. Amssoms, S. Oza, E. Ravaschino, A. Yamani, A. Lambeir et al., Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 1: Substitution of the glycine carboxylic acid group, Bioorganic & Medicinal Chemistry Letters, vol.12, issue.18, pp.2553-2556, 2002.
DOI : 10.1016/S0960-894X(02)00489-4

K. Amssoms, O. S. Augustyns, K. Yamani, A. , L. A. Bal et al., Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 2: Substitution of the glycine part, Bioorganic & Medicinal Chemistry Letters, vol.12, issue.19, pp.2703-2705, 2002.
DOI : 10.1016/S0960-894X(02)00538-3

S. Oza, S. Chen, S. Wyllie, J. Coward, and A. Fairlamb, ATP-dependent ligases in trypanothione biosynthesis - kinetics of catalysis and inhibition by phosphinic acid pseudopeptides, FEBS Journal, vol.283, issue.21, pp.5408-5421, 2008.
DOI : 10.1074/jbc.M801850200

D. Silva, C. Daunes, S. Rock, P. , Y. V. Croft et al., Structure???Activity Study on the in Vitro Antiprotozoal Activity of Glutathione Derivatives, Journal of Medicinal Chemistry, vol.43, issue.10, pp.2072-2078, 2000.
DOI : 10.1021/jm990259w

S. Daunes, D. Silva, C. Kendrick, H. , Y. V. Croft et al., to the in Vitro Antiprotozoal Activity of Glutathione Derivatives, Journal of Medicinal Chemistry, vol.44, issue.18, pp.2976-2983, 2001.
DOI : 10.1021/jm000502n

S. Daunes, D. Silva, and C. , Glutathione Derivatives Active against Trypanosoma brucei rhodesiense and T.brucei brucei In Vitro, Antimicrobial Agents and Chemotherapy, vol.46, issue.2, pp.434-437, 2002.
DOI : 10.1128/AAC.46.2.434-437.2002

URL : http://aac.asm.org/content/46/2/434.full.pdf

E. Ravaschino, R. Docampo, and J. Rodriguez, Targeting Trypanothione Biosynthesis, Journal of Medicinal Chemistry, vol.49, issue.1, pp.426-435, 2006.
DOI : 10.1021/jm050922i

F. Stuhlmann, T. Jäger, L. Flohé, and D. Schinzer, N 5 -substituted 2-(6-oxo-6,7-dihydro-5H-benzo[2,3]azepino [4,5-b]indol-5-yl)-acetamides for treating tropical diseases

V. ?kedelj, E. Arsovska, T. Toma?i?, A. Krofli?, V. Hodnik et al., 6-Arylpyrido[2,3-d]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine:D-Alanine Ligase, PLoS ONE, vol.7, issue.8, p.22876277, 2012.
DOI : 10.1371/journal.pone.0039922.s005

J. Miller, S. Dunham, I. Mochalkin, C. Banotai, M. Bowman et al., A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.1737-1742, 2009.
DOI : 10.1017/S002217240001158X

G. Labadie, S. Choi, and M. Avery, Diamine derivatives with antiparasitic activities, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.3, pp.615-619, 2004.
DOI : 10.1016/j.bmcl.2003.11.055

A. Caminos, E. Panozzo-zenere, S. Wilkinson, B. Tekwani, and G. Labadie, Synthesis and antikinetoplastid activity of a series of N,N???-substituted diamines, Bioorganic & Medicinal Chemistry Letters, vol.22, issue.4, pp.1712-1715, 2012.
DOI : 10.1016/j.bmcl.2011.12.101

A. Bitonti, P. Mccann, and A. Sjoerdsma, The Effects of Polyamine Analogues on Malaria Parasites In Vitro and In Vivo, Adv Exp Med Biol, vol.250, pp.717-726, 1998.
DOI : 10.1007/978-1-4684-5637-0_63

A. Bitonti, J. Dumont, T. Bush, M. Edwards, D. Stemerick et al., Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure murine malaria., Proceedings of the National Academy of Sciences, vol.86, issue.2, pp.651-655, 1989.
DOI : 10.1073/pnas.86.2.651

A. Bitonti, J. Dumont, T. Bush, D. Stemerick, M. Edwards et al., Bis(benzyl)polyamine analogs as novel substrates for polyamine oxidase, J Biol Chem, vol.265, pp.382-388, 1990.

T. Byers, T. Bush, P. Mccann, and A. Bitonti, -adenosyl-l-methionine, Biochemical Journal, vol.274, issue.2, pp.527-533, 1991.
DOI : 10.1042/bj2740527

URL : https://hal.archives-ouvertes.fr/hal-00188140

J. ?arlauskas, V. Miliukien?, ?. Anusevi?ius, L. Misevi?ien?, K. Krik?topaitis et al., Redox properties and prooxidant cytotoxicity of benzofuroxans: a comparison with nitrobenzenes, Chemija, vol.20, pp.109-115, 2009.

J. ?arlauskas, ?. Anusevi?ius, and A. Misi?nas, Benzofuroxan (Benzo[1,2-c]1,2,5-oxadiazole N-oxide) derivatives as potential energetic materials: studies on their synthesis and properties, Central European Journal of Energetic Materials, vol.9, pp.365-386, 2012.

J. ?arlauskas, Synthesis of energetic materials containing benzimidazole core, Proceedings of Seminar on New Trends in Research of Energetic Materials, vol.11, issue.2, pp.730-737, 2010.

J. ?arlauskas, Synthesis of some new heterocyclic derivatives of benzofuroxan, Proceedings of 7 th Natl. Lithuanian Conference, pp.104-109, 2005.

J. ?arlauskas, L. Misevi?ien?, A. Marozien?, L. Karvelis, J. Stankevi?i?t? et al., The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans), International Journal of Molecular Sciences, vol.90, issue.12, pp.23307-23338, 2014.
DOI : 10.1021/j100410a036

F. Maiwald, D. Benítez, D. Charquero, A. Dar, M. Erdmann et al., 9-and 11-substituted 4- azapaullones are potent and selective inhibitors of African trypanosome, Eur J Med Chem, vol.18, pp.274-283, 2014.
DOI : 10.1016/j.ejmech.2014.06.020

F. Fueller, B. Jehle, K. Putzker, J. Lewis, and R. Krauth-siegel, High Throughput Screening against the Peroxidase Cascade of African Trypanosomes Identifies Antiparasitic Compounds That Inactivate Tryparedoxin, Journal of Biological Chemistry, vol.248, issue.12, pp.8792-8802, 2012.
DOI : 10.1038/nrd3410

M. Taylor, H. Kaur, B. Blessington, J. Kelly, and S. Wilkinson, Validation of spermidine synthase as a drug target in African trypanosomes, Biochemical Journal, vol.409, issue.2, pp.563-569, 2008.
DOI : 10.1042/BJ20071185

J. Zhang, T. Chung, and K. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, Journal of Biomolecular Screening, vol.4, issue.2, pp.67-73, 1999.
DOI : 10.1177/108705719900400206

A. Fairlamb, G. Henderson, C. Bacchi, and A. Cerami, In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.24, issue.2, pp.185-191, 1987.
DOI : 10.1016/0166-6851(87)90105-8

M. Comini, N. Dirdjaja, M. Kaschel, and R. Krauth-siegel, Preparative enzymatic synthesis of trypanothione and trypanothione analogues, International Journal for Parasitology, vol.39, issue.10, pp.1059-1062, 2009.
DOI : 10.1016/j.ijpara.2009.05.002

J. Haanstra, A. Van-tuijl, J. Van-dam, W. Van-winden, A. Tielens et al., Proliferating bloodstream-form Trypanosoma brucei use a negligible part of consumed glucose for anabolic processes, International Journal for Parasitology, vol.42, issue.7, pp.667-673, 2012.
DOI : 10.1016/j.ijpara.2012.04.009

N. Visser and F. Opperdoes, Glycolysis in Trypanosoma brucei, European Journal of Biochemistry, vol.74, issue.3, pp.623-632, 1980.
DOI : 10.1042/bj0540086

R. Martins, C. Covarrubias, R. Rojas, A. Silber, and N. Yoshida, Use of L-Proline and ATP Production by Trypanosoma cruzi Metacyclic Forms as Requirements for Host Cell Invasion, Infection and Immunity, vol.77, issue.7, pp.3023-3032, 2009.
DOI : 10.1128/IAI.00138-09

D. Zilberstein and D. Dwyer, Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani., Proceedings of the National Academy of Sciences, vol.82, issue.6, pp.1716-1720, 1985.
DOI : 10.1073/pnas.82.6.1716

B. Bakker, P. Michels, F. Opperdoes, and H. Westerhoff, Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes, Journal of Biological Chemistry, vol.162, issue.6, pp.3207-3215, 1997.
DOI : 10.1016/0014-4894(77)90040-6

P. Graven, M. Tambalo, L. Scapozza, and R. Perozzo, Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools, Experimental Parasitology, vol.141, pp.28-38, 2014.
DOI : 10.1016/j.exppara.2014.03.006

A. Stoppani, R. Docampo, J. De-boiso, and A. Frasch, Effect of inhibitors of electron transport and oxidative phosphorylation on trypanosoma cruzi respiration and growth, Molecular and Biochemical Parasitology, vol.2, issue.1, pp.3-21, 1980.
DOI : 10.1016/0166-6851(80)90044-4

D. Hart, K. Vickerman, and G. Coombs, A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers, Parasitology, vol.81, issue.03, pp.345-355, 1981.
DOI : 10.1080/00034983.1976.11687119

M. Boiani, L. Piacenza, P. Hernández, L. Boiani, H. Cerecetto et al., Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved?, Biochemical Pharmacology, vol.79, issue.12, pp.1736-1745, 2010.
DOI : 10.1016/j.bcp.2010.02.009

O. Koch, D. Cappel, M. Nocker, T. Jager, L. Flohé et al., Molecular Dynamics Reveal Binding Mode of Glutathionylspermidine by Trypanothione Synthetase, PLoS ONE, vol.139, issue.2, p.23451087, 2013.
DOI : 10.1371/journal.pone.0056788.s001

C. Pai, B. Chiang, T. Ko, C. Chou, C. Chong et al., Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase, The EMBO Journal, vol.35, issue.24, pp.5970-5982, 2006.
DOI : 10.1042/bj2340249

URL : http://emboj.embopress.org/content/embojnl/25/24/5970.full.pdf