M. R. Meini, L. I. Llarrull, and A. J. Vila, Overcoming differences: The catalytic 447 mechanism of metallo-beta-lactamases, FEBS Lett, vol.589, pp.3419-3432, 2015.

M. R. Meini, L. I. Llarrull, and A. J. Vila, Evolution of Metallo-beta-lactamases: Trends 449 Revealed by Natural Diversity and in vitro Evolution, Antibiotics.(Basel), vol.3, pp.285-316, 2014.

T. Palzkill, Metallo-beta-lactamase structure and function, Ann.N.Y.Acad.Sci, vol.451, pp.91-104, 2013.

L. I. Llarrull, S. A. Testero, J. F. Fisher, and M. S. , The future of the beta453 lactams, Curr.Opin.Microbiol, vol.13, pp.551-557, 2010.

I. Garcia-saez, J. D. Docquier, G. M. Rossolini, and D. O. , The three-dimensional 474 structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced 475 and oxidised form, J.Mol.Biol, vol.375, pp.604-611, 2008.

N. Concha, B. A. Rasmussen, K. Bush, and H. O. , Crystal structure of the wide477 spectrum binuclear zinc beta-lactamase from Bacteroides fragilis, Structure, vol.4, pp.823-836, 1996.

D. T. King, L. J. Worrall, R. Gruninger, and N. C. Strynadka, New Delhi metallo-beta479 lactamase: structural insights into beta-lactam recognition and inhibition, 2012.
DOI : 10.1021/ja303579d

, J.Am.Chem.Soc, vol.134, pp.11362-11365

L. J. Gonzalez, D. M. Moreno, R. A. Bonomo, and A. J. Vila, Host-specific enzyme482 substrate interactions in SPM-1 metallo-beta-lactamase are modulated by second 483 sphere residues, PLoS.Pathog, vol.10, p.1003817, 2014.

C. Bebrone, H. Delbruck, M. B. Kupper, P. Schlomer, C. Willmann et al., , p.485

M. Galleni and K. M. Hoffmann, The structure of the dizinc subclass B2 metallo486 beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine 487 site, Antimicrob.Agents Chemother, vol.53, pp.4464-4471, 2009.

V. M. Hernandez, A. Felici, G. Weber, H. W. Adolph, M. Zeppezauer et al., , p.489

G. Amicosante, J. M. Frere, and G. M. , Zn(II) dependence of the Aeromonas 490 hydrophila AE036 metallo-beta-lactamase activity and stability, Biochemistry, vol.36, pp.11534-491, 1997.

P. Emsley, B. Lohkamp, W. G. Scott, and C. K. , , p.550, 2010.

. Coot, Acta Crystallographica Section D, vol.66, pp.486-501

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller et al., , vol.552

O. S. Smart, C. Vonrhein, and T. O. Womack, BUSTER version 2.11.4. Cambridge, 553 United Kingdom: Global Phasing Ltd, 2011.

P. D. Adams, R. W. Grosse-kunstleve, L. W. Hung, T. R. Ioerger, A. J. Mccoy et al., PHENIX: building new software 556 for automated crystallographic structure determination, Acta Crystallographica Section 557 D-Biological Crystallography, vol.58, pp.1948-1954, 2002.

J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz et al., CASTp: 559 computed atlas of surface topography of proteins with structural and topographical 560 mapping of functionally annotated residues, Nucleic Acids Res, vol.34, pp.116-118, 2006.

L. At and R. M. Jackson, Q-SiteFinder: an energy-based method for the 562 prediction of protein-ligand binding sites, Bioinformatics, vol.21, pp.1908-1916, 2005.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor 565 flexibility, J.Comput.Chem, vol.564, pp.2785-2791, 2009.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, 1996.

, J.Mol.Graph, vol.14, pp.33-38

H. Berendsen, J. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, , 1984.

, Molecular dynamics with coupling to an external bath, J Chem Phys, vol.81, pp.3684-3690

J. P. Ryckaert, G. Ciccotti, and H. Berendsen, Numerical-Integration of Cartesian 590 Equations of Motion of A System with Constraints-Molecular-Dynamics of N-Alkanes, Journal of Computational Physics, vol.591, pp.327-341, 1977.

D. R. Roe, I. Cheatham, and . Te, PTRAJ and CPPTRAJ: software for processing and 593 analysis of molecular synamics trajectory data, J Chem Theory, pp.3084-3095, 2013.

J. Spencer, J. Read, R. B. Sessions, S. Howell, G. M. Blackburn et al., 595 Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray 596 crystallography, J.Am.Chem.Soc, vol.127, pp.14439-14444, 2005.

J. Moran-barrio, A. S. Limansky, and A. M. Viale, Secretion of GOB metallo-beta598 lactamase in Escherichia coli depends strictly on the cooperation between the 599 cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and 600, 2009.

. Zn, II) ion acquisition occur in the bacterial periplasm, Antimicrob.Agents Chemother, vol.601, pp.2908-2917

S. Tottey, K. J. Waldron, S. J. Firbank, B. Reale, C. Bessant et al., Protein-folding location can regulate 604 manganese-binding versus copper-or zinc-binding, Nature, vol.455, pp.1138-1142, 2008.

H. Nar, R. Huber, A. Messerschmidt, A. C. Filippou, M. Barth et al., 606 and Canters GW. 1992. Characterization and crystal structure of zinc azurin

V. B. Chen, W. B. Arendall, I. Headd, J. J. Keedy, D. A. Immormino et al., , p.628

J. S. Richardson and D. C. Richardson, MolProbity: all-atom structure validation for 629 macromolecular crystallography, Acta Crystallogr.D.Biol.Crystallogr, vol.66, pp.12-21, 2010.

, The segments of GOB-18 exhibiting the highest rmsd values are highlighted 656 in colors

, Chain A is colored by atom in 659 yellow (C atoms), blue (N atoms), red (oxygen atoms) and dark gray (zinc atoms). Chain B is 660 shown in light grey throughout. Protein residues are depicted in sticks, zinc atoms are shown as 661 big spheres and water molecules as small spheres. The 2mFo-DFc sigmaA-weighted electron 662 density, contoured at 1.7 ? and represented as a grey mesh, corresponds to chain A. Dashed 663 lines represent atomic interactions and the related distances are of 2.1 Å in all cases except for 664 the interactions Zn1-Gln98 and Zn1-axial water where distances are 2.0 Å and 2.2 Å, 665 respectively, The active site of periplasmic GOB-18. (A) Upper panel: Comparison of the active site 658 in the two monomers present in the crystal structure of GOB-18, p.667

, Residues in the second coordination sphere in the active of GOB-18 (chain A) are shown in stick 668 representation with C atoms colored in cyan

, FIGURE 5. The catalytic groove in GOB-18. Surface representation of GOB-18