S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature, vol.403, issue.6771, pp.795-800, 2000.

J. L. Feldman, J. Baeza, and J. M. Denu, Activation of the Protein Deacetylase SIRT6 by Long-chain Fatty Acids and Widespread Deacylation by Mammalian Sirtuins, Journal of Biological Chemistry, vol.35, issue.43, pp.31350-31356, 2013.
DOI : 10.1074/jbc.R112.378877

D. Shore, M. Squire, and K. A. Nasmyth, Characterization of two genes required for the position-effect control of yeast mating-type genes, The EMBO Journal, vol.3, issue.12, pp.2817-2823, 1984.

M. Gotta, S. Strahl-bolsinger, and H. Renauld, Localization of Sir2p: the nucleolus as a compartment for silent information regulators, The EMBO Journal, vol.16, issue.11, pp.3243-3255, 1997.
DOI : 10.1093/emboj/16.11.3243

B. P. Hubbard and D. A. Sinclair, Small molecule SIRT1 activators for the treatment of aging and age-related diseases, Trends in Pharmacological Sciences, vol.35, issue.3, pp.146-154, 2014.
DOI : 10.1016/j.tips.2013.12.004

R. A. Frye, Phylogenetic Classification of Prokaryotic and Eukaryotic Sir2-like Proteins, Biochemical and Biophysical Research Communications, vol.273, issue.2, pp.793-798, 2000.
DOI : 10.1006/bbrc.2000.3000

T. Finkel, C. Deng, and R. Mostoslavsky, Recent progress in the biology and physiology of sirtuins, Nature, vol.324, issue.7255, pp.587-591, 2009.
DOI : 10.7150/ijbs.5.147

J. M. Sherman, E. M. Stone, L. L. Freeman-cook, C. B. Brachmann, J. D. Boeke et al., The Conserved Core of a Human SIR2 Homologue Functions in Yeast Silencing, Molecular Biology of the Cell, vol.10, issue.9, pp.3045-3059, 1999.
DOI : 10.1091/mbc.10.9.3045

J. Min, J. Landry, R. Sternglanz, and R. Xu, Crystal Structure of a SIR2 Homolog???NAD Complex, Cell, vol.105, issue.2, pp.269-279, 2001.
DOI : 10.1016/S0092-8674(01)00317-8

S. P. Chakrabarty and H. Balaram, Reversible binding of zinc in Plasmodium falciparum Sir2: Structure and activity of the apoenzyme, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.9, pp.1743-1750, 2010.
DOI : 10.1016/j.bbapap.2010.06.010

M. S. Finnin, J. R. Donigian, and N. P. Pavletich, Structure of the histone deacetylase SIRT2, Nature Structural Biology, vol.8, issue.7, pp.621-625, 2001.
DOI : 10.1038/89668

J. Chang, H. Kim, and K. Hwang, Structural Basis for the NAD-dependent Deacetylase Mechanism of Sir2, Journal of Biological Chemistry, vol.6, issue.37, pp.34489-34498, 2002.
DOI : 10.1107/S0907444994006396

J. L. Avalos, I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke et al., Structure of a Sir2 Enzyme Bound to an Acetylated p53 Peptide, Molecular Cell, vol.10, issue.3, pp.523-535, 2002.
DOI : 10.1016/S1097-2765(02)00628-7

K. Zhao, R. Harshaw, X. Chai, and R. Marmorstein, Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases, Proceedings of the National Academy of Sciences, vol.24, issue.3, pp.8563-8568, 2004.
DOI : 10.1128/MCB.24.3.1301-1312.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC423234

R. A. Frye, Characterization of Five Human cDNAs with Homology to the Yeast SIR2 Gene: Sir2-like Proteins (Sirtuins) Metabolize NAD and May Have Protein ADP-Ribosyltransferase Activity, Biochemical and Biophysical Research Communications, vol.260, issue.1, pp.273-279, 1999.
DOI : 10.1006/bbrc.1999.0897

G. Liszt, E. Ford, M. Kurtev, and L. Guarente, Mouse Sir2 Homolog SIRT6 Is a Nuclear ADP-ribosyltransferase, Journal of Biological Chemistry, vol.155, issue.22, pp.21313-21320, 2005.
DOI : 10.1111/j.1432-1033.1986.tb09471.x

M. C. Haigis, R. Mostoslavsky, and K. M. Haigis, SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic ?? Cells, Cell, vol.126, issue.5, pp.941-954, 2006.
DOI : 10.1016/j.cell.2006.06.057

J. Du, Y. Zhou, and X. Su, Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase, Science, vol.239, issue.6, pp.806-809, 2011.
DOI : 10.1016/j.molcel.2006.06.026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313

H. Jiang, S. Khan, and Y. Wang, SIRT6 regulates TNF-?? secretion through hydrolysis of long-chain fatty acyl lysine, Nature, vol.419, issue.7443, pp.110-113, 2013.
DOI : 10.1007/978-1-59745-033-1_14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073

C. Choudhary, C. Kumar, and F. Gnad, Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions, Science, vol.131, issue.1, pp.834-840, 2009.
DOI : 10.1016/j.cell.2007.07.034

K. T. Smith and J. L. Workman, Introducing the acetylome, Nature Biotechnology, vol.637, issue.10, pp.917-919, 2009.
DOI : 10.1038/nbt1418

B. T. Weinert, S. A. Wagner, and H. Horn, Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation Regulation of cellular metabolism by protein lysine acetylation, Science Signaling Science, vol.4, issue.327 5968, pp.1000-1004, 2010.

D. Rauh, F. Fischer, and M. Gertz, An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms, Nature Communications, vol.17, 2013.
DOI : 10.1074/jbc.M109.014928

M. C. Haigis and D. A. Sinclair, Mammalian Sirtuins: Biological Insights and Disease Relevance, Annual Review of Pathology: Mechanisms of Disease, vol.5, issue.1, pp.253-295, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866163

C. Sebastia´nsebastia´n, F. K. Satterstrom, M. C. Haigis, and R. Mostoslavsky, From Sirtuin Biology to Human Diseases: An Update, Journal of Biological Chemistry, vol.18, issue.51, pp.42444-42452, 2012.
DOI : 10.1016/j.cell.2012.10.047

R. H. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nature Reviews Molecular Cell Biology, vol.20, issue.4, pp.225-238, 2012.
DOI : 10.1093/hmg/ddr089

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872805

E. Verdin, The Many Faces of Sirtuins: Coupling of NAD metabolism, sirtuins and lifespan, Nature Medicine, vol.20, issue.1, pp.25-27, 2014.
DOI : 10.1038/nature12752

D. P. Jones, Redefining Oxidative Stress, Antioxidants & Redox Signaling, vol.8, issue.9-10, pp.1865-1879, 2006.
DOI : 10.1089/ars.2006.8.1865

H. Sies, Oxidative stress: oxidants and antioxidants, Experimental Physiology, vol.82, issue.2, pp.291-295, 1997.
DOI : 10.1113/expphysiol.1997.sp004024

S. Nemoto, M. M. Fergusson, and T. Finkel, Nutrient Availability Regulates SIRT1 Through a Forkhead-Dependent Pathway, Science, vol.306, issue.5704, pp.2105-2108, 2004.
DOI : 10.1126/science.1101731

Z. Lu, X. Xu, and X. Hu, PGC-1?? Regulates Expression of Myocardial Mitochondrial Antioxidants and Myocardial Oxidative Stress After Chronic Systolic Overload, Antioxidants & Redox Signaling, vol.13, issue.7, pp.1011-1022, 2010.
DOI : 10.1089/ars.2009.2940

J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman et al., Nutrient control of glucose homeostasis through a complex of PGC-1?? and SIRT1, Nature, vol.103, issue.7029, pp.113-118, 2005.
DOI : 10.1101/gad.1164804

J. St-pierre, S. Drori, and M. Uldry, Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators, Cell, vol.127, issue.2, pp.397-408, 2006.
DOI : 10.1016/j.cell.2006.09.024

S. Rajendrasozhan, S. Yang, V. L. Kinnula, and I. Rahman, SIRT1, an Antiinflammatory and Antiaging Protein, Is Decreased in Lungs of Patients with Chronic Obstructive Pulmonary Disease, American Journal of Respiratory and Critical Care Medicine, vol.177, issue.8, pp.861-870, 2008.
DOI : 10.1164/rccm.200708-1269OC

H. Vaziri, S. K. Dessain, and E. N. Eaton, hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase, Cell, vol.107, issue.2, pp.149-159, 2001.
DOI : 10.1016/S0092-8674(01)00527-X

URL : http://doi.org/10.1016/s0092-8674(01)00527-x

J. Lee, M. Song, and E. Song, Overexpression of SIRT1 Protects Pancreatic ??-Cells Against Cytokine Toxicity by Suppressing the Nuclear Factor-??B Signaling Pathway, Diabetes, vol.58, issue.2, pp.344-351, 2009.
DOI : 10.2337/db07-1795

Y. Chen, J. Zhang, and Y. Lin, Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS, EMBO reports, vol.12, issue.6, pp.534-541, 2011.
DOI : 10.1126/science.1179689

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128277

X. Qiu, K. Brown, M. D. Hirschey, E. Verdin, and D. Chen, Calorie Restriction Reduces Oxidative Stress by SIRT3-Mediated SOD2 Activation, Cell Metabolism, vol.12, issue.6, pp.662-667, 2010.
DOI : 10.1016/j.cmet.2010.11.015

URL : http://doi.org/10.1016/j.cmet.2010.11.015

R. R. Alcendor, S. Gao, and P. Zhai, Sirt1 Regulates Aging and Resistance to Oxidative Stress in the Heart, Circulation Research, vol.100, issue.10, pp.1512-1521, 2007.
DOI : 10.1161/01.RES.0000267723.65696.4a

D. Guan, J. H. Lim, and L. Peng, Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death, Cell Death and Disease, vol.2, issue.7, 2014.
DOI : 10.1128/MCB.00496-12

Y. Yang, W. Fu, and J. Chen, SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress, Nature Cell Biology, vol.275, issue.11, pp.1253-1262, 2007.
DOI : 10.1038/ncb1645

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201724

S. V. De-kreutzenberg, G. Ceolotto, and I. Papparella, Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms, Diabetes, vol.59, issue.4, pp.1006-1015, 2010.
DOI : 10.2337/db09-1187

S. Caito, S. Rajendrasozhan, and S. Cook, SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress, The FASEB Journal, vol.24, issue.9, pp.3145-3159, 2010.
DOI : 10.1096/fj.09-151308

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923349

S. Jung, C. Kim, and Y. Kim, Redox Factor-1 Activates Endothelial SIRTUIN1 through Reduction of Conserved Cysteine Sulfhydryls in Its Deacetylase Domain, PLoS ONE, vol.51, issue.6, 2013.
DOI : 10.1371/journal.pone.0065415.s001

L. Tong, S. Lee, and J. M. Denu, Metabolites and Modulates Cellular Redox, Journal of Biological Chemistry, vol.9, issue.17, pp.11256-11266, 2009.
DOI : 10.1101/sqb.2007.72.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670130

I. Autiero, S. Costantini, and G. Colonna, Human Sirt-1: Molecular Modeling and Structure-Function Relationships of an Unordered Protein, PLoS ONE, vol.93, issue.10, 2009.
DOI : 10.1371/journal.pone.0007350.s009

T. Sasaki, B. Maier, and K. D. Koclega, Phosphorylation regulates SIRT1 function Article ID e4020 Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response, PLoS ONE Antioxidants & Redox Signaling, vol.3, issue.20 9, pp.1463-1480, 2008.

H. Kang, J. Jung, M. K. Kim, and J. H. Chung, CK2 Is the Regulator of SIRT1 Substrate-Binding Affinity, Deacetylase Activity and Cellular Response to DNA-Damage, PLoS ONE, vol.3, issue.8, 2009.
DOI : 10.1371/journal.pone.0006611.s002

K. M. Kim, J. D. Song, H. T. Chung, and Y. C. Park, Protein kinase CK2 mediates peroxynitrite-induced heme oxygenase-1 expression in articular chondrocytes, International Journal of Molecular Medicine, vol.29, issue.6, pp.1039-1044, 2012.

V. Nin, C. Escande, and C. C. Chini, Role of Deleted in Breast Cancer 1 (DBC1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase A and AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.1012, issue.28, pp.23489-23501, 2012.
DOI : 10.1101/gad.188482.112

A. W. Lau, P. Liu, H. Inuzuka, and D. Gao, SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation, American Journal of Cancer Research, vol.4, issue.3, pp.245-255, 2014.

S. Wu, Y. Wu, T. Wu, and Y. Wei, Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress, BBA)?General Subjects, pp.1331-1344, 2014.
DOI : 10.1016/j.bbagen.2013.10.034

X. Guo, J. G. Williams, T. T. Schug, and X. Li, DYRK1A and DYRK3 Promote Cell Survival through Phosphorylation and Activation of SIRT1, Journal of Biological Chemistry, vol.5, issue.17, pp.13223-13232, 2010.
DOI : 10.1038/nrc2562

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857074

H. Kang, J. Suh, Y. Jung, J. Jung, M. K. Kim et al., Peptide Switch Is Essential for Sirt1 Deacetylase Activity, Molecular Cell, vol.44, issue.2, pp.203-213, 2011.
DOI : 10.1016/j.molcel.2011.07.038

URL : http://doi.org/10.1016/j.molcel.2011.07.038

N. Nasrin, V. K. Kaushik, and E. Fortier, JNK1 Phosphorylates SIRT1 and Promotes Its Enzymatic Activity, PLoS ONE, vol.4, issue.12, 2009.
DOI : 10.1371/journal.pone.0008414.s001

URL : http://doi.org/10.1371/journal.pone.0008414

Z. Gerhart-hines, J. E. Dominy, and S. M. Blättler, The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote Fatty Acid Oxidation Independently of Changes in NAD+, Molecular Cell, vol.44, issue.6, pp.851-863, 2011.
DOI : 10.1016/j.molcel.2011.12.005

F. Nahhas, S. C. Dryden, J. Abrams, and M. A. Tainsky, Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin, Molecular and Cellular Biochemistry, vol.25, issue.Pt 1, pp.221-230, 2007.
DOI : 10.1093/jb/mvh084

B. J. North and E. Verdin, Mitotic Regulation of SIRT2 by Cyclin-dependent Kinase 1-dependent Phosphorylation, Journal of Biological Chemistry, vol.36, issue.27, pp.19546-19555, 2007.
DOI : 10.1128/MCB.25.11.4541-4551.2005

Y. Bian, C. Song, and K. Cheng, An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome, Journal of Proteomics, vol.96, pp.253-262, 2014.
DOI : 10.1016/j.jprot.2013.11.014

N. Dephoure, C. Zhou, and J. Villén, A quantitative atlas of mitotic phosphorylation, Proceedings of the National Academy of Sciences, vol.34, issue.suppl_1, pp.10762-10767, 2008.
DOI : 10.1093/nar/gkj141

U. Thirumurthi, J. Shen, and W. Xia, MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer, Science Signaling, vol.48, issue.7, p.71, 2014.
DOI : 10.1002/mc.20504

R. S. Zee, C. B. Yoo, and D. R. Pimentel, -Glutathiolation, Antioxidants & Redox Signaling, vol.13, issue.7, pp.1023-1032, 2010.
DOI : 10.1089/ars.2010.3251

URL : https://hal.archives-ouvertes.fr/hal-01436342

M. T. Borra, B. C. Smith, and J. M. Denu, Mechanism of Human SIRT1 Activation by Resveratrol, Journal of Biological Chemistry, vol.12, issue.17, pp.17187-17195, 2005.
DOI : 10.1074/jbc.M414080200

M. D. Kornberg, N. Sen, and M. R. Hara, GAPDH mediates nitrosylation of nuclear proteins, Nature Cell Biology, vol.100, issue.11, pp.1094-1100, 2010.
DOI : 10.1038/ncb2114

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972384

D. Shao, J. L. Fry, and J. Han, A Redox-resistant Sirtuin-1 Mutant Protects against Hepatic Metabolic and Oxidant Stress, Journal of Biological Chemistry, vol.3, issue.11, pp.7293-7306, 2014.
DOI : 10.1371/journal.pone.0010486

URL : http://www.jbc.org/content/289/11/7293.full.pdf

K. S. Fritz, J. J. Galligan, and R. L. Smathers, 4-Hydroxynonenal Inhibits SIRT3 via Thiol-Specific Modification, Chemical Research in Toxicology, vol.24, issue.5, pp.651-662, 2011.
DOI : 10.1021/tx100355a

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113719

J. Yang, V. Gupta, K. S. Carroll, and D. C. Liebler, Site-specific mapping and quantification of protein S-sulphenylation in cells, Nature Communications, vol.4, p.4776, 2014.
DOI : 10.1038/nmeth.2646

S. Hu, H. Liu, and Y. Ha, Posttranslational modification of Sirt6 activity by peroxynitrite, Free Radical Biology and Medicine, vol.79, pp.176-185, 2015.
DOI : 10.1016/j.freeradbiomed.2014.11.011

J. Kim, J. Chen, and Z. Lou, DBC1 is a negative regulator of SIRT1, Nature, vol.305, issue.7178, pp.583-586, 2008.
DOI : 10.1038/nature06500

E. Kim, J. Kho, M. Kang, and S. Um, Active Regulator of SIRT1 Cooperates with SIRT1 and Facilitates Suppression of p53 Activity, Molecular Cell, vol.28, issue.2, pp.277-290, 2007.
DOI : 10.1016/j.molcel.2007.08.030

J. Yuan, K. Luo, T. Liu, and Z. Lou, Regulation of SIRT1 activity by genotoxic stress, Genes & Development, vol.26, issue.8, pp.791-796, 2012.
DOI : 10.1101/gad.188482.112

C. Escande, C. C. Chini, and V. Nin, Deleted in breast cancer???1 regulates SIRT1 activity and contributes to high-fat diet???induced liver steatosis in mice, Journal of Clinical Investigation, vol.120, issue.2, pp.545-558, 2010.
DOI : 10.1172/JCI39319DS1

C. Escande, V. Nin, and T. Pirtskhalava, Deleted in Breast Cancer 1 Limits Adipose Tissue Fat Accumulation and Plays a Key Role in the Development of Metabolic Syndrome Phenotype, Diabetes, vol.64, issue.1, pp.12-22, 2015.
DOI : 10.2337/db14-0192

D. Volonte, H. Zou, J. N. Bartholomew, Z. Liu, P. A. Morel et al., Oxidative Stress-induced Inhibition of Sirt1 by Caveolin-1 Promotes p53-dependent Premature Senescence and Stimulates the Secretion of Interleukin 6 (IL-6), Journal of Biological Chemistry, vol.290, issue.7, pp.4202-4214, 2015.
DOI : 10.1172/JCI60132

E. N. Chini, CD38 as a Regulator of Cellular NAD: A Novel Potential Pharmacological Target for Metabolic Conditions, Current Pharmaceutical Design, vol.15, issue.1, pp.57-63, 2009.
DOI : 10.2174/138161209787185788

J. Yoshino, K. F. Mills, M. J. Yoon, and S. Imai, Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice, Cell Metabolism, vol.14, issue.4, pp.528-536, 2011.
DOI : 10.1016/j.cmet.2011.08.014

C. Cantó, R. H. Houtkooper, and E. Pirinen, The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity, Cell Metabolism, vol.15, issue.6, pp.838-847, 2012.
DOI : 10.1016/j.cmet.2012.04.022

C. Escande, V. Nin, and N. L. Price, Flavonoid Apigenin Is an Inhibitor of the NAD+ase CD38: Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome, Diabetes, vol.62, issue.4, pp.1084-1093, 2013.
DOI : 10.2337/db12-1139

M. T. Barbosa, S. M. Soares, and C. M. Novak, The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity, The FASEB Journal, vol.21, issue.13, pp.3629-3639, 2007.
DOI : 10.1096/fj.07-8290com

P. Aksoy, T. A. White, M. Thompson, and E. N. Chini, Regulation of intracellular levels of NAD: A novel role for CD38, Biochemical and Biophysical Research Communications, vol.345, issue.4, pp.1386-1392, 2006.
DOI : 10.1016/j.bbrc.2006.05.042

P. Aksoy, C. Escande, and T. A. White, Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38, Biochemical and Biophysical Research Communications, vol.349, issue.1, pp.353-359, 2006.
DOI : 10.1016/j.bbrc.2006.08.066

S. B. Rajamohan, V. B. Pillai, and M. Gupta, SIRT1 Promotes Cell Survival under Stress by Deacetylation-Dependent Deactivation of Poly(ADP-Ribose) Polymerase 1, Molecular and Cellular Biology, vol.29, issue.15, pp.4116-4129, 2009.
DOI : 10.1128/MCB.00121-09

N. Braidy, G. J. Guillemin, H. Mansour, T. Chan-ling, A. Poljak et al., Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats, PLoS ONE, vol.275, issue.4, 2011.
DOI : 10.1371/journal.pone.0019194.t001

URL : http://doi.org/10.1371/journal.pone.0019194

L. Du, X. Zhang, and Y. Y. Han, Depletion and Cell Death Induced by Oxidative Stress, Journal of Biological Chemistry, vol.19, issue.20, pp.18426-18433, 2003.
DOI : 10.1126/science.282.5393.1484

K. T. Howitz, K. J. Bitterman, and H. Y. Cohen, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, vol.425, issue.6954, pp.191-196, 2003.
DOI : 10.1038/nature01960

M. Kaeberlein, T. Mcdonagh, and B. Heltweg, Substrate-specific Activation of Sirtuins by Resveratrol, Journal of Biological Chemistry, vol.25, issue.17, pp.17038-17045, 2005.
DOI : 10.1358/dnp.2003.16.5.829318

J. C. Milne, P. D. Lambert, and S. Schenk, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes, Nature, vol.104, issue.7170, pp.712-716, 2007.
DOI : 10.1038/nature06261

C. Cantó, Z. Gerhart-hines, and J. N. Feige, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.276, issue.7241, pp.1056-1060, 2009.
DOI : 10.1152/japplphysiol.00349.2003

S. Park, F. Ahmad, and A. Philp, Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases, Cell, vol.148, issue.3, pp.421-433, 2012.
DOI : 10.1016/j.cell.2012.01.017

URL : http://doi.org/10.1186/1753-6561-6-s3-p73

S. J. Mitchell, A. Martin-montalvo, and E. M. Mercken, The SIRT1 Activator SRT1720 Extends Lifespan and Improves Health of Mice Fed a Standard Diet, Cell Reports, vol.6, issue.5, pp.836-843, 2014.
DOI : 10.1016/j.celrep.2014.01.031

R. K. Minor, J. A. Baur, and A. P. Gomes, SRT1720 improves survival and healthspan of obese mice, Scientific Reports, vol.10, issue.1, 2011.
DOI : 10.1016/0076-6879(67)10010-4

M. Pacholec, J. E. Bleasdale, and B. Chrunyk, SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1, Journal of Biological Chemistry, vol.19, issue.11, pp.8340-8351, 2010.
DOI : 10.1186/1752-0509-3-31

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832984

B. P. Hubbard, A. P. Gomes, and H. Dai, Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators, Science, vol.394, issue.1, pp.1216-1219, 2013.
DOI : 10.1016/j.ab.2009.07.019

H. Dai, L. Kustigian, and D. Carney, SIRT1 Activation by Small Molecules, Journal of Biological Chemistry, vol.120, issue.43, pp.32695-32703, 2010.
DOI : 10.1152/ajpendo.00417.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963390

J. J. Smith, R. D. Kenney, and D. J. Gagne, Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo, BMC Systems Biology, vol.3, issue.1, p.31, 2009.
DOI : 10.1186/1752-0509-3-31

G. Boily, X. H. He, B. Pearce, K. Jardine, and M. W. Mcburney, SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol, Oncogene, vol.62, issue.32, pp.2882-2893, 2009.
DOI : 10.1093/cvr/cvn224

K. J. Pearson, J. A. Baur, and K. N. Lewis, Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span, Cell Metabolism, vol.8, issue.2, pp.157-168, 2008.
DOI : 10.1016/j.cmet.2008.06.011

J. M. Ajmo, X. Liang, C. Q. Rogers, B. Pennock, and M. You, Resveratrol alleviates alcoholic fatty liver in mice, AJP: Gastrointestinal and Liver Physiology, vol.295, issue.4, pp.833-842, 2008.
DOI : 10.1152/ajpgi.90358.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575919

J. Hwang, D. W. Kwak, S. K. Lin, H. M. Kim, Y. M. Kim et al., Resveratrol Induces Apoptosis in Chemoresistant Cancer Cells via Modulation of AMPK Signaling Pathway, Annals of the New York Academy of Sciences, vol.332, issue.1, pp.441-448, 2007.
DOI : 10.1242/jcs.01540

M. Lagouge, C. Argmann, and Z. Gerhart-hines, Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1??, Cell, vol.127, issue.6, pp.1109-1122, 2006.
DOI : 10.1016/j.cell.2006.11.013

URL : https://hal.archives-ouvertes.fr/hal-00188005

J. A. Baur, K. J. Pearson, and N. L. Price, Resveratrol improves health and survival of mice on a high-calorie diet, Nature, vol.35, issue.7117, pp.337-342, 2006.
DOI : 10.1016/S1525-1578(10)60455-2

J. G. Wood, B. Rogina, and S. Lavu, Sirtuin activators mimic caloric restriction and delay ageing in metazoans, Nature, vol.197, issue.7000, pp.686-689, 2004.
DOI : 10.1016/S0009-9120(96)00155-5

Y. Yamazaki, I. Usui, and Y. Kanatani, Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice, AJP: Endocrinology and Metabolism, vol.297, issue.5, pp.1179-1186, 2009.
DOI : 10.1152/ajpendo.90997.2008

J. M. Feige, M. Lagouge, and C. Canto, Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation, Cell Metabolism, vol.8, issue.5, pp.347-358, 2008.
DOI : 10.1016/j.cmet.2008.08.017

URL : https://hal.archives-ouvertes.fr/inserm-00350876

M. Tanno, A. Kuno, and T. Yano, Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure, Journal of Biological Chemistry, vol.56, issue.11, pp.8375-8382, 2010.
DOI : 10.1038/nature06261

S. M. Shin, I. J. Cho, and S. G. Kim, Resveratrol Protects Mitochondria against Oxidative Stress through AMP-Activated Protein Kinase-Mediated Glycogen Synthase Kinase-3?? Inhibition Downstream of Poly(ADP-ribose)polymerase-LKB1 Pathway, Molecular Pharmacology, vol.76, issue.4, pp.884-895, 2009.
DOI : 10.1124/mol.109.058479

E. D. Brookins-danz, J. Skramsted, N. Henry, J. A. Bennett, and R. S. Keller, Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway, Free Radical Biology and Medicine, vol.46, issue.12, pp.1589-1597, 2009.
DOI : 10.1016/j.freeradbiomed.2009.03.011

J. Hwang, D. Y. Kwon, O. J. Park, and M. S. Kim, Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells, Genes & Nutrition, vol.15, issue.4, pp.323-326, 2008.
DOI : 10.1007/s12263-007-0069-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478493

A. Csiszar, N. Labinskyy, and A. Podlutsky, Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations, AJP: Heart and Circulatory Physiology, vol.294, issue.6, pp.2721-2735, 2008.
DOI : 10.1152/ajpheart.00235.2008

H. Yao, I. K. Sundar, and T. Ahmad, SIRT1 protects against cigarette smoke-induced lung oxidative stress via a FOXO3-dependent mechanism, AJP: Lung Cellular and Molecular Physiology, vol.306, issue.9, pp.816-828, 2014.
DOI : 10.1152/ajplung.00323.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010647

A. Vaquero, M. Scher, D. Lee, H. Erdjument-bromage, P. Tempst et al., Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin, Molecular Cell, vol.16, issue.1, pp.93-105, 2004.
DOI : 10.1016/j.molcel.2004.08.031

S. Kong, S. Kim, and B. Sandal, The Type III Histone Deacetylase Sirt1 Protein Suppresses p300-mediated Histone H3 Lysine 56 Acetylation at Bclaf1 Promoter to Inhibit T Cell Activation, Journal of Biological Chemistry, vol.8, issue.19, pp.16967-16975, 2011.
DOI : 10.1074/jbc.M706384200

B. Ponugoti, D. Kim, and Z. Xiao, SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism, Journal of Biological Chemistry, vol.54, issue.44, pp.33959-33970, 2010.
DOI : 10.1128/MCB.00553-09

F. Picard, M. Kurtev, and N. Chung, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-??, Nature, vol.261, issue.6993, pp.771-776, 2004.
DOI : 10.1074/jbc.272.52.33435

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820247

F. Yeung, J. E. Hoberg, and C. S. Ramsey, Modulation of NF-??B-dependent transcription and cell survival by the SIRT1 deacetylase, The EMBO Journal, vol.19, issue.12, pp.2369-2380, 2004.
DOI : 10.1016/S1097-2765(02)00477-X

I. Mattagajasingh, C. Kim, and A. Naqvi, SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase, Proceedings of the National Academy of Sciences, vol.310, issue.5746, pp.14855-14860, 2007.
DOI : 10.1126/science.1117728

URL : http://www.pnas.org/content/104/37/14855.full.pdf

J. Nakae, Y. Cao, and H. Daitoku, The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity, Journal of Clinical Investigation, vol.116, issue.9, pp.2473-2483, 2006.
DOI : 10.1172/JCI25518

J. Lim, Y. Lee, Y. Chun, J. Chen, J. Kim et al., Sirtuin 1 Modulates Cellular Responses to Hypoxia by Deacetylating Hypoxia-Inducible Factor 1??, Molecular Cell, vol.38, issue.6, pp.864-878, 2010.
DOI : 10.1016/j.molcel.2010.05.023

URL : http://doi.org/10.1016/j.molcel.2010.05.023

M. Tanno, J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio, -dependent Histone Deacetylase SIRT1, Journal of Biological Chemistry, vol.16, issue.9, pp.6823-6832, 2007.
DOI : 10.1161/01.RES.0000197782.21444.8f

URL : https://hal.archives-ouvertes.fr/inserm-01465127

W. C. Hallows, S. Lee, and J. M. Denu, Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases, Proceedings of the National Academy of Sciences, vol.36, issue.4, pp.10230-10235, 2006.
DOI : 10.1016/j.ymeth.2005.03.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480596

N. R. Sundaresan, V. B. Pillai, and D. Wolfgeher, The Deacetylase SIRT1 Promotes Membrane Localization and Activation of Akt and PDK1 During Tumorigenesis and Cardiac Hypertrophy, Science Signaling, vol.4, issue.182, p.46, 2011.
DOI : 10.1126/scisignal.2001465

Y. Liu, R. Dentin, and D. Chen, A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange, Nature, vol.104, issue.7219, pp.269-273, 2008.
DOI : 10.1172/JCI200112876

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597669

T. Yamamori, J. Dericco, and A. Naqvi, SIRT1 deacetylates APE1 and regulates cellular base excision repair, Nucleic Acids Research, vol.38, issue.3, pp.832-845, 2009.
DOI : 10.1093/nar/gkp1039

URL : http://doi.org/10.1093/nar/gkp1039

W. Jiang, S. Wang, and M. Xiao, Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5??Ubiquitin Ligase, Molecular Cell, vol.43, issue.1, pp.33-44, 2011.
DOI : 10.1016/j.molcel.2011.04.028

URL : http://doi.org/10.1016/j.molcel.2011.04.028

Y. Teng, H. Jing, and P. Aramsangtienchai, Efficient Demyristoylase Activity of SIRT2 Revealed by Kinetic and Structural Studies, Scientific Reports, vol.50, issue.1, 2015.
DOI : 10.1107/S0907444993011898

S. C. Dryden, F. A. Nahhas, J. E. Nowak, A. Goustin, and M. A. Tainsky, Role for Human SIRT2 NAD-Dependent Deacetylase Activity in Control of Mitotic Exit in the Cell Cycle, Molecular and Cellular Biology, vol.23, issue.9, pp.3173-3185, 2003.
DOI : 10.1128/MCB.23.9.3173-3185.2003

A. Vaquero, M. B. Scher, and H. L. Dong, SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis, Genes & Development, vol.20, issue.10, pp.1256-1261, 2006.
DOI : 10.1101/gad.1412706

URL : http://genesdev.cshlp.org/content/20/10/1256.full.pdf

T. Chen, J. Liu, and N. Li, Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD, PLoS ONE, vol.10, issue.3, 2015.

W. Yu, K. E. Dittenhafer-reed, and J. M. Denu, SIRT3 Protein Deacetylates Isocitrate Dehydrogenase 2 (IDH2) and Regulates Mitochondrial Redox Status, Journal of Biological Chemistry, vol.1816, issue.17, pp.14078-14086, 2012.
DOI : 10.1016/j.ccr.2011.02.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340192

O. Ozden, S. Park, and B. A. Wagner, SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells, SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells, pp.163-172, 2014.
DOI : 10.1016/j.freeradbiomed.2014.08.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364304

R. A. Mathias, T. M. Greco, and A. Oberstein, Sirtuin 4 Is a Lipoamidase Regulating Pyruvate Dehydrogenase Complex Activity, Cell, vol.159, issue.7, pp.1615-1625, 2014.
DOI : 10.1016/j.cell.2014.11.046

URL : http://doi.org/10.1016/j.cell.2014.11.046

J. Park, Y. Chen, and D. X. Tishkoff, SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways, Molecular Cell, vol.50, issue.6, pp.919-930, 2013.
DOI : 10.1016/j.molcel.2013.06.001

URL : http://doi.org/10.1016/j.molcel.2013.06.001

M. Tan, C. Peng, and K. A. Anderson, Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5, Cell Metabolism, vol.19, issue.4, pp.605-617, 2014.
DOI : 10.1016/j.cmet.2014.03.014

URL : http://doi.org/10.1016/j.cmet.2014.03.014

N. R. Sundaresan, P. Vasudevan, and L. Zhong, The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun, Nature Medicine, vol.119, issue.11, pp.1643-1650, 2012.
DOI : 10.1371/journal.pone.0016171

E. Michishita, R. A. Mccord, and E. Berber, SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin, Nature, vol.273, issue.7186, pp.492-496, 2008.
DOI : 10.1128/MCB.14.9.5777

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646112

E. Michishita, R. A. Mccord, and L. D. Boxer, Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6, Cell Cycle, vol.8, issue.16, pp.2664-2666, 2009.
DOI : 10.4161/cc.8.16.9367

Z. Mao, C. Hine, and X. Tian, SIRT6 Promotes DNA Repair Under Stress by Activating PARP1, Science, vol.1, issue.1, pp.1443-1446, 2011.
DOI : 10.1023/A:1010089924898

S. Chen, J. Seiler, M. Santiago-reichelt, K. Felbel, I. Grummt et al., Repression of RNA Polymerase I upon Stress Is Caused by Inhibition of RNA-Dependent Deacetylation of PAF53 by SIRT7, Molecular Cell, vol.52, issue.3, pp.303-313, 2013.
DOI : 10.1016/j.molcel.2013.10.010

M. F. Barber, E. Michishita-kioi, and Y. Xi, SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation, Nature, vol.35, issue.7405, pp.114-118, 2012.
DOI : 10.1093/nar/gkm272

J. Tomé-carneiro, M. Larrosa, A. González-sarrías, F. A. Tomás-barberán, M. T. García-conesa et al., Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence, Current Pharmaceutical Design, vol.19, issue.34, pp.6064-6093, 2013.
DOI : 10.2174/13816128113199990407

A. Baksi, O. Kraydashenko, and A. Zalevkaya, A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes, British Journal of Clinical Pharmacology, vol.98, issue.Suppl. 1, pp.69-77, 2012.
DOI : 10.1016/S0092-8674(00)80611-X

H. Lee, K. R. Kim, and S. J. Noh, Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma, Human Pathology, vol.42, issue.2, pp.204-213, 2011.
DOI : 10.1016/j.humpath.2010.05.023

X. Yu, Y. Liu, and T. Jin, The Expression of SIRT1 and DBC1 in Laryngeal and Hypopharyngeal Carcinomas, PLoS ONE, vol.13, issue.6, 2013.
DOI : 10.1371/journal.pone.0066975.t002