M. Cardenas-rodriguez and J. Badano, Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.52, issue.4, 2009.
DOI : 10.1091/mbc.12.3.589

URL : https://hal.archives-ouvertes.fr/pasteur-00604821

N. Sharma, N. Berbari, and B. Yoder, Chapter 13 Ciliary Dysfunction in Developmental Abnormalities and Diseases, Curr Top Dev Biol, vol.85, pp.371-427, 2008.
DOI : 10.1016/S0070-2153(08)00813-2

N. Berbari, O. Connor, A. Haycraft, C. Yoder, and B. , The Primary Cilium as a Complex Signaling Center, Current Biology, vol.19, issue.13, pp.526-535, 2009.
DOI : 10.1016/j.cub.2009.05.025

S. Goetz and K. Anderson, The primary cilium: a signalling centre during vertebrate development, Nature Reviews Genetics, vol.18, issue.5, pp.331-344, 2010.
DOI : 10.4161/cc.5.13.2928

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121168

H. Ishikawa, J. Thompson, J. Yates, and W. Marshall, Proteomic Analysis of Mammalian Primary Cilia, Current Biology, vol.22, issue.5, pp.414-419, 2012.
DOI : 10.1016/j.cub.2012.01.031

URL : http://doi.org/10.1016/j.cub.2012.01.031

F. Garcia-gonzalo and J. Reiter, Scoring a backstage pass: Mechanisms of ciliogenesis and ciliary access, The Journal of Cell Biology, vol.3, issue.6, pp.697-709, 2012.
DOI : 10.1091/mbc.E08-07-0772

J. Reiter, O. Blacque, and M. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization, EMBO reports, vol.20, issue.7, pp.608-618, 2012.
DOI : 10.1093/hmg/ddq494

H. Kee, J. Dishinger, T. Blasius, C. Liu, and B. Margolis, A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia, Nature Cell Biology, vol.19, issue.4, pp.431-437, 2012.
DOI : 10.1083/jcb.201001057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319646

H. Kee and K. Verhey, Molecular connections between nuclear and ciliary import processes, Cilia, vol.2, issue.1, 2013.
DOI : 10.1186/2046-2530-2-11

URL : http://doi.org/10.1186/2046-2530-2-11

B. Cautain, R. Hill, N. De-pedro, and W. Link, Components and regulation of nuclear transport processes, FEBS Journal, vol.271, issue.Pt 2, pp.445-462, 2015.
DOI : 10.1074/jbc.271.33.20024

L. Pemberton and B. Paschal, Mechanisms of Receptor-Mediated Nuclear Import and Nuclear Export, Traffic, vol.59, issue.3, pp.187-198, 2005.
DOI : 10.1016/j.tem.2004.09.006

Y. Chook and K. Suel, Nuclear import by karyopherin-??s: Recognition and inhibition, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.9, pp.1593-1606, 2011.
DOI : 10.1016/j.bbamcr.2010.10.014

URL : http://doi.org/10.1016/j.bbamcr.2010.10.014

D. Breslow, E. Koslover, F. Seydel, A. Spakowitz, and M. Nachury, An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier, The Journal of Cell Biology, vol.249, issue.1, pp.129-147, 2013.
DOI : 10.7554/eLife.00654

D. Takao, J. Dishinger, H. Kee, J. Pinskey, and B. Allen, An Assay for Clogging the Ciliary Pore Complex Distinguishes Mechanisms of Cytosolic and Membrane Protein Entry, Current Biology, vol.24, issue.19, pp.2288-2294, 2014.
DOI : 10.1016/j.cub.2014.08.012

J. Dishinger, H. Kee, P. Jenkins, S. Fan, and T. Hurd, Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-??2 and RanGTP, Nature Cell Biology, vol.147, issue.7, pp.703-710, 2010.
DOI : 10.1111/j.1365-2818.1987.tb02821.x

T. Hurd, S. Fan, and B. Margolis, Localization of retinitis pigmentosa 2 to cilia is regulated by Importin ??2, Journal of Cell Science, vol.124, issue.5, pp.718-726, 2011.
DOI : 10.1242/jcs.070839

C. Gascue, P. Tan, M. Cardenas-rodriguez, G. Libisch, and T. Fernandez-calero, Direct role of Bardet-Biedl syndrome proteins in transcriptional regulation, Journal of Cell Science, vol.125, issue.2, pp.362-375, 2012.
DOI : 10.1242/jcs.089375

URL : https://hal.archives-ouvertes.fr/pasteur-00686313

C. Haycraft, B. Banizs, Y. Aydin-son, Q. Zhang, and E. Michaud, Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function, PLoS Genet, vol.1, pp.480-0488, 2005.

M. Maia, T. Gogendeau, D. Pennetier, C. Janke, C. Basto et al., Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules, Biology Open, vol.3, issue.2, pp.138-151, 2014.
DOI : 10.1242/bio.20146577

D. Zalli, R. Bayliss, and A. Fry, The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis, Human Molecular Genetics, vol.21, issue.5, pp.1155-1171, 2012.
DOI : 10.1093/hmg/ddr544

D. Huangfu, A. Liu, A. Rakeman, N. Murcia, and L. Niswander, Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature, vol.426, issue.6962, pp.83-87, 2003.
DOI : 10.1038/nature02061

K. Corbit, P. Aanstad, V. Singla, A. Norman, and D. Stainier, Vertebrate Smoothened functions at the primary cilium, Nature, vol.280, issue.7061, pp.1018-1021, 2005.
DOI : 10.1038/nature04117

J. Kim, M. Kato, and P. Beachy, Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus, Proceedings of the National Academy of Sciences, vol.23, issue.16, pp.21666-21671, 2009.
DOI : 10.1101/gad.1794109

Y. Nozawa, C. Lin, and P. Chuang, Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction, Current Opinion in Genetics & Development, vol.23, issue.4, pp.429-437, 2013.
DOI : 10.1016/j.gde.2013.04.008

R. Rohatgi, L. Milenkovic, R. Corcoran, and M. Scott, Hedgehog signal transduction by Smoothened: Pharmacologic evidence for a 2-step activation process, Proceedings of the National Academy of Sciences, vol.445, issue.7126, pp.3196-3201, 2009.
DOI : 10.1038/nature05474

URL : http://www.pnas.org/content/106/9/3196.full.pdf

J. Briscoe and P. Therond, The mechanisms of Hedgehog signalling and its roles in development and disease, Nature Reviews Molecular Cell Biology, vol.435, issue.7, pp.416-429, 2013.
DOI : 10.1038/nature03494

URL : https://hal.archives-ouvertes.fr/hal-00831295

Y. Pan, C. Bai, A. Joyner, and B. Wang, Sonic hedgehog Signaling Regulates Gli2 Transcriptional Activity by Suppressing Its Processing and Degradation, Molecular and Cellular Biology, vol.26, issue.9, pp.3365-3377, 2006.
DOI : 10.1128/MCB.26.9.3365-3377.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1447407

M. Tuson, M. He, and K. Anderson, Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube, Development, vol.138, issue.22, pp.4921-4930, 2011.
DOI : 10.1242/dev.070805

P. Barnfield, X. Zhang, V. Thanabalasingham, M. Yoshida, and C. Hui, Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms, Differentiation, vol.73, issue.8, pp.397-405, 2005.
DOI : 10.1111/j.1432-0436.2005.00042.x

E. Humke, K. Dorn, L. Milenkovic, M. Scott, and R. Rohatgi, The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins, Genes & Development, vol.24, issue.7, pp.670-682, 2010.
DOI : 10.1101/gad.1902910

H. Tukachinsky, L. Lopez, and A. Salic, A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu???Gli protein complexes, The Journal of Cell Biology, vol.125, issue.2, pp.415-428, 2010.
DOI : 10.1083/jcb.201004108.dv

J. Chen, J. Taipale, K. Young, T. Maiti, and P. Beachy, Small molecule modulation of Smoothened activity, Proceedings of the National Academy of Sciences, vol.18, issue.3, pp.14071-14076, 2002.
DOI : 10.1038/sj.onc.1202360

X. Zeng, J. Goetz, L. Suber, W. Scott, . Jr et al., A freely diffusible form of Sonic hedgehog mediates long-range signalling, Nature, vol.411, issue.6838, pp.716-720, 2001.
DOI : 10.1038/35079648

Y. Sancak, T. Peterson, Y. Shaul, R. Lindquist, and C. Thoreen, The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1, Science, vol.344, issue.3, pp.1496-1501, 2008.
DOI : 10.1016/j.bbrc.2006.03.220

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475333

K. Ishiguro, T. Ando, O. Maeda, N. Ohmiya, and Y. Niwa, Acetate inhibits NFAT activation in T cellsvia importin ??1 interference, European Journal of Immunology, vol.153, issue.8, pp.2309-2316, 2007.
DOI : 10.4049/jimmunol.168.2.900

V. Pollard, W. Michael, S. Nakielny, M. Siomi, and F. Wang, A Novel Receptor-Mediated Nuclear Protein Import Pathway, Cell, vol.86, issue.6, pp.985-994, 1996.
DOI : 10.1016/S0092-8674(00)80173-7

URL : http://doi.org/10.1016/s0092-8674(00)80173-7

P. Niewiadomski, J. Kong, R. Ahrends, Y. Ma, and E. Humke, Gli Protein Activity Is Controlled by Multisite Phosphorylation in Vertebrate Hedgehog Signaling, Cell Reports, vol.6, issue.1, pp.168-181, 2014.
DOI : 10.1016/j.celrep.2013.12.003

URL : http://doi.org/10.1016/j.celrep.2013.12.003

H. Sasaki, C. Hui, M. Nakafuku, and H. Kondoh, A binding site for Gli proteins is essential for HNF- 3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro, Development, vol.124, pp.1313-1322, 1997.

S. Kosugi, M. Hasebe, M. Tomita, and H. Yanagawa, Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs, Proceedings of the National Academy of Sciences, vol.9, issue.12, pp.10171-10176, 2009.
DOI : 10.1111/j.1600-0854.2008.00825.x

A. Szczepny, K. Wagstaff, M. Dias, K. Gajewska, and C. Wang, Overlapping binding sites for importin ??1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization, Biochemical Journal, vol.30, issue.3, pp.469-476, 2014.
DOI : 10.1016/j.mod.2004.10.002

J. Soderholm, S. Bird, P. Kalab, Y. Sampathkumar, and K. Hasegawa, Importazole, a Small Molecule Inhibitor of the Transport Receptor Importin-??, ACS Chemical Biology, vol.6, issue.7, pp.700-708, 2011.
DOI : 10.1021/cb2000296

S. Mukhopadhyay, X. Wen, N. Ratti, A. Loktev, and L. Rangell, The Ciliary G-Protein-Coupled Receptor Gpr161 Negatively Regulates the Sonic Hedgehog Pathway via cAMP Signaling, Cell, vol.152, issue.1-2, pp.210-223, 2013.
DOI : 10.1016/j.cell.2012.12.026

URL : http://doi.org/10.1016/j.cell.2012.12.026

K. Lounsbury, S. Richards, K. Carey, and I. Macara, Mutations within the Ran/TC4 GTPase, Journal of Biological Chemistry, vol.15, issue.51, pp.32834-32841, 1996.
DOI : 10.1073/pnas.91.21.10212

N. Kudo, B. Wolff, T. Sekimoto, E. Schreiner, and Y. Yoneda, Leptomycin B Inhibition of Signal-Mediated Nuclear Export by Direct Binding to CRM1, Experimental Cell Research, vol.242, issue.2, pp.540-547, 1998.
DOI : 10.1006/excr.1998.4136

N. Santos and J. Reiter, A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity, Journal of Cell Science, vol.127, issue.7, p.24463817, 2014.
DOI : 10.1242/jcs.139253

T. Guttler and D. Gorlich, Ran-dependent nuclear export mediators: a structural perspective, The EMBO Journal, vol.243, issue.17, pp.3457-3474, 2011.
DOI : 10.1006/bbrc.1997.8070

T. Maiuri, T. Woloshansky, J. Xia, and R. Truant, The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal, Human Molecular Genetics, vol.22, issue.7, pp.1383-1394, 2013.
DOI : 10.1093/hmg/dds554

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596850

A. Cansizoglu, B. Lee, Z. Zhang, B. Fontoura, and Y. Chook, Structure-based design of a pathway-specific nuclear import inhibitor, Nature Structural & Molecular Biology, vol.110, issue.5, pp.452-454, 2007.
DOI : 10.1242/jcs.01008

J. Liu, H. Zeng, and A. Liu, The loss of Hh responsiveness by a non-ciliary Gli2 variant, Development, vol.142, issue.9, p.25834022, 2015.
DOI : 10.1242/dev.119669

Q. Shi, Y. Han, and J. Jiang, Suppressor of fused impedes Ci/Gli nuclear import by opposing Trn/Kap??2 in Hedgehog signaling, Journal of Cell Science, vol.127, issue.5, pp.1092-1103, 2014.
DOI : 10.1242/jcs.142828

M. Chen, C. Wilson, Y. Li, K. Law, and C. Lu, Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved, Genes & Development, vol.23, issue.16, 1910.
DOI : 10.1101/gad.1794109

J. Jia, A. Kolterud, H. Zeng, A. Hoover, and S. Teglund, Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia, Developmental Biology, vol.330, issue.2, 2009.
DOI : 10.1016/j.ydbio.2009.04.009

S. Fan and B. Margolis, The Ran importin system in cilia trafficking, Organogenesis, vol.72, issue.3, pp.147-153, 2011.
DOI : 10.1128/IAI.72.7.4188-4199.2004

T. Sheng, C. S. Zhang, X. Xie, and J. , Regulation of Gli1 Localization by the cAMP/Protein Kinase A Signaling Axis through a Site Near the Nuclear Localization Signal, Journal of Biological Chemistry, vol.126, issue.1, pp.9-12, 2006.
DOI : 10.1074/jbc.M401720200

M. Dunaeva, P. Michelson, P. Kogerman, and R. Toftgard, Characterization of the Physical Interaction of Gli Proteins with SUFU Proteins, Journal of Biological Chemistry, vol.2, issue.7, pp.5116-5122, 2003.
DOI : 10.1074/jbc.M105317200

R. Linding, R. Russell, V. Neduva, and T. Gibson, GlobPlot: exploring protein sequences for globularity and disorder, Nucleic Acids Research, vol.31, issue.13, pp.3701-3708, 2003.
DOI : 10.1093/nar/gkg519

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169197/pdf

R. Linding, L. Jensen, F. Diella, P. Bork, and T. Gibson, Protein Disorder Prediction, Structure, vol.11, issue.11, pp.1453-1459, 2003.
DOI : 10.1016/j.str.2003.10.002

A. Ferreon, J. Ferreon, P. Wright, and A. Deniz, Modulation of allostery by protein intrinsic disorder, Nature, vol.328, issue.7454, pp.390-394, 2013.
DOI : 10.1016/S0022-2836(03)00246-8

D. Mick, R. Rodrigues, R. Leib, C. Adams, and A. Chien, Proteomics of Primary Cilia by Proximity Labeling, Developmental Cell, vol.35, issue.4, pp.497-512, 2015.
DOI : 10.1016/j.devcel.2015.10.015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662609

B. Lee, A. Cansizoglu, K. Suel, T. Louis, and Z. Zhang, Rules for Nuclear Localization Sequence Recognition by Karyopherin??2, Cell, vol.126, issue.3, pp.543-558, 2006.
DOI : 10.1016/j.cell.2006.05.049

URL : http://doi.org/10.1016/j.cell.2006.05.049

K. Suel, H. Gu, and Y. Chook, Modular Organization and Combinatorial Energetics of Proline???Tyrosine Nuclear Localization Signals, PLoS Biology, vol.138, issue.6, p.18532879, 2008.
DOI : 10.1371/journal.pbio.0060137.sd002

H. Zeng, J. Jia, and A. Liu, Coordinated Translocation of Mammalian Gli Proteins and Suppressor of Fused to the Primary Cilium, PLoS ONE, vol.278, issue.Pt 23, p.21209912, 2010.
DOI : 10.1371/journal.pone.0015900.s004

S. Endoh-yamagami, M. Evangelista, D. Wilson, X. Wen, and J. Theunissen, The Mammalian Cos2 Homolog Kif7 Plays an Essential Role in Modulating Hh Signal Transduction during Development, Current Biology, vol.19, issue.15, pp.1320-1326, 2009.
DOI : 10.1016/j.cub.2009.06.046

M. He, R. Subramanian, F. Bangs, T. Omelchenko, K. Liem et al., The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment, Nature Cell Biology, vol.125, issue.7, pp.663-672, 2014.
DOI : 10.1242/jcs.1991.Supplement_14.25

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085576

C. Insinna, N. Pathak, B. Perkins, I. Drummond, and J. Besharse, The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development, Developmental Biology, vol.316, issue.1, pp.160-170, 2008.
DOI : 10.1016/j.ydbio.2008.01.025

P. Jenkins, T. Hurd, L. Zhang, D. Mcewen, and R. Brown, Ciliary Targeting of Olfactory CNG Channels Requires the CNGB1b Subunit and the Kinesin-2 Motor Protein, KIF17, Current Biology, vol.16, issue.12, pp.1211-1216, 2006.
DOI : 10.1016/j.cub.2006.04.034

B. Carpenter, R. Barry, K. Verhey, and B. Allen, The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function, Journal of Cell Science, vol.128, issue.5, p.25588831, 2015.
DOI : 10.1242/jcs.162552

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342584

C. Notredame, D. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

P. Gouet, E. Courcelle, D. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, issue.4, pp.305-308, 1999.
DOI : 10.1093/bioinformatics/15.4.305

URL : https://hal.archives-ouvertes.fr/hal-00314288