C. Souders, S. Bowers, and T. Baudino, Cardiac Fibroblast: The Renaissance Cell, Circulation Research, vol.105, issue.12, pp.1164-1176, 2009.
DOI : 10.1161/CIRCRESAHA.109.209809

URL : http://circres.ahajournals.org/content/circresaha/105/12/1164.full.pdf

L. Yue, J. Xie, and S. Nattel, Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation, Cardiovascular Research, vol.89, issue.4, pp.744-753, 2011.
DOI : 10.1093/cvr/cvq329

B. Burstein and S. Nattel, Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation, Journal of the American College of Cardiology, vol.51, issue.8, pp.802-809, 2008.
DOI : 10.1016/j.jacc.2007.09.064

C. Brilla, Renin???angiotensin???aldosterone system and myocardial fibrosis, Cardiovascular Research, vol.47, issue.1, pp.1-3, 2000.
DOI : 10.1016/S0008-6363(00)00092-4

C. Brilla, G. Zhou, L. Matsubara, and K. Weber, Collagen Metabolism in Cultured Adult Rat Cardiac Fibroblasts: Response to Angiotensin II and Aldosterone, Journal of Molecular and Cellular Cardiology, vol.26, issue.7, pp.809-820, 1994.
DOI : 10.1006/jmcc.1994.1098

A. Tadevosyan, G. Vaniotis, B. Allen, T. Hebert, and S. Nattel, G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function, The Journal of Physiology, vol.84, issue.6, pp.1313-1330, 2012.
DOI : 10.1139/y05-147

V. Singh, K. Baker, and R. Kumar, Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production, AJP: Heart and Circulatory Physiology, vol.294, issue.4, pp.1675-1684, 2008.
DOI : 10.1152/ajpheart.91493.2007

V. Singh, B. Le, R. Khode, K. Baker, and R. Kumar, Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis, Diabetes, vol.57, issue.12, pp.3297-3306, 2008.
DOI : 10.2337/db08-0805

D. Mello and W. , Beyond the circulating renin-angiotensin aldosterone system, Front Endocrinol (Lausanne), vol.5, p.104, 2014.

A. Tadevosyan, B. Allen, and S. Nattel, Isolation and Study of Cardiac Nuclei from Canine Myocardium and Adult Ventricular Myocytes, Methods Mol Biol, vol.1234, pp.69-80, 2015.
DOI : 10.1007/978-1-4939-1755-6_7

A. Tadevosyan, L. Villeneuve, A. Fournier, D. Chatenet, S. Nattel et al., Caged ligands to study the role of intracellular GPCRs, Methods, vol.92, pp.72-77, 2016.
DOI : 10.1016/j.ymeth.2015.07.005

URL : https://hal.archives-ouvertes.fr/pasteur-01351729

B. Burstein, X. Qi, Y. Yeh, A. Calderone, and S. Nattel, Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling???, Cardiovascular Research, vol.76, issue.3, pp.442-452, 2007.
DOI : 10.1016/j.cardiores.2007.07.013

M. Aguilar, X. Qi, H. Huang, and S. Nattel, Fibroblast Electrical Remodeling in Heart Failure and Potential Effects on Atrial Fibrillation, Biophysical Journal, vol.107, issue.10, pp.2444-2455, 2014.
DOI : 10.1016/j.bpj.2014.10.014

URL : http://doi.org/10.1016/j.bpj.2014.10.014

X. Qi, H. Huang, B. Ordog, X. Luo, P. Naud et al., Fibroblast Inward-Rectifier Potassium Current Upregulation in Profibrillatory Atrial Remodeling, Circulation Research, vol.116, issue.5, pp.836-845, 2015.
DOI : 10.1161/CIRCRESAHA.116.305326

A. Tadevosyan, A. Maguy, L. Villeneuve, J. Babin, A. Bonnefoy et al., Nuclear-delimited Angiotensin Receptor-mediated Signaling Regulates Cardiomyocyte Gene Expression, Journal of Biological Chemistry, vol.39, issue.29, pp.22338-22349, 2010.
DOI : 10.1097/HJH.0b013e328165d159

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903375

B. Boivin, C. D. Villeneuve, L. Rousseau, E. Allen, and B. , Functional Endothelin Receptors Are Present on Nuclei in Cardiac Ventricular Myocytes, Journal of Biological Chemistry, vol.142, issue.31, pp.29153-29163, 2003.
DOI : 10.1126/science.273.5283.1875

C. Wright, Q. Chen, N. Baye, Y. Huang, C. Healy et al., Nuclear ??1-Adrenergic Receptors Signal Activated ERK Localization to Caveolae in Adult Cardiac Myocytes, Circulation Research, vol.103, issue.9, pp.992-1000, 2008.
DOI : 10.1161/CIRCRESAHA.108.176024

B. Boivin, C. Lavoie, G. Vaniotis, A. Baragli, L. Villeneuve et al., Functional ??-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes, Cardiovascular Research, vol.71, issue.1, pp.69-78, 2006.
DOI : 10.1016/j.cardiores.2006.03.015

N. Doan, T. Nguyen, M. Letourneau, K. Turcotte, A. Fournier et al., Biochemical and pharmacological characterization of nuclear urotensin-II binding sites in rat heart, British Journal of Pharmacology, vol.6, issue.1, pp.243-257, 2012.
DOI : 10.1021/mp800239p

URL : https://hal.archives-ouvertes.fr/pasteur-00818552

M. Brink, P. Erne, M. De-gasparo, H. Rogg, A. Schmid et al., Localization of the Angiotensin II Receptor Subtypes in the Human Atrium, Journal of Molecular and Cellular Cardiology, vol.28, issue.8, pp.1789-1799, 1996.
DOI : 10.1006/jmcc.1996.0168

Y. Tsutsumi, H. Matsubara, N. Ohkubo, Y. Mori, Y. Nozawa et al., Angiotensin II Type 2 Receptor Is Upregulated in Human Heart With Interstitial Fibrosis, and Cardiac Fibroblasts Are the Major Cell Type for Its Expression, Circulation Research, vol.83, issue.10, pp.1035-1046, 1998.
DOI : 10.1161/01.RES.83.10.1035

M. Galindo, B. Santiago, G. Palao, I. Gutierrez-canas, J. Ramirez et al., Coexpression of AT1 and AT2 receptors by human fibroblasts is associated with resistance to angiotensin II, Peptides, vol.26, issue.9, pp.1647-1653, 2005.
DOI : 10.1016/j.peptides.2005.02.024

A. Boldt, U. Wetzel, J. Weigl, J. Garbade, J. Lauschke et al., Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease, Journal of the American College of Cardiology, vol.42, issue.10, pp.1785-1792, 2003.
DOI : 10.1016/j.jacc.2003.07.014

D. Lee, A. Lanca, R. Cheng, T. Nguyen, X. Ji et al., Receptors, Journal of Biological Chemistry, vol.355, issue.9, pp.7901-7908, 2004.
DOI : 10.1074/jbc.M004630200

URL : https://hal.archives-ouvertes.fr/hal-00355674

S. Katta, C. Smoyer, and S. Jaspersen, Destination: inner nuclear membrane, Trends in Cell Biology, vol.24, issue.4, pp.221-229, 2014.
DOI : 10.1016/j.tcb.2013.10.006

R. Carey, Z. Wang, and H. Siragy, Role of the Angiotensin Type 2 Receptor in the Regulation of Blood Pressure and Renal Function, Hypertension, vol.35, issue.1, pp.155-163, 2000.
DOI : 10.1161/01.HYP.35.1.155

L. Hunyady, M. Bor, T. Balla, and K. Catt, Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor, J Biol Chem, vol.269, pp.31378-31382, 1994.

M. Drake, S. Shenoy, and R. Lefkowitz, Trafficking of G Protein-Coupled Receptors, Circulation Research, vol.99, issue.6, pp.570-582, 2006.
DOI : 10.1161/01.RES.0000242563.47507.ce

J. Li, X. Zhao, X. Li, K. Lerea, and S. Olson, Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a G??i3/Ras/Raf/MAPK pathway, AJP: Cell Physiology, vol.292, issue.6, pp.2185-2196, 2007.
DOI : 10.1152/ajpcell.00204.2006

L. Hunyady and K. Catt, Receptor Signaling Pathways Mediating Physiological and Pathogenic Actions of Angiotensin II, Molecular Endocrinology, vol.20, issue.5, pp.953-970, 2006.
DOI : 10.1210/me.2004-0536

T. Gwathmey, H. Shaltout, K. Pendergrass, N. Pirro, J. Figueroa et al., Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production, AJP: Renal Physiology, vol.296, issue.6, pp.1484-1493, 2009.
DOI : 10.1152/ajprenal.90766.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692453

G. Vaniotis, S. Gora, A. Nantel, T. Hebert, and B. Allen, Examining the Effects of Nuclear GPCRs on Gene Expression Using Isolated Nuclei, Methods Mol Biol, vol.1234, pp.185-195, 2015.
DOI : 10.1007/978-1-4939-1755-6_15

G. Vaniotis, D. Duca, D. Trieu, P. Rohlicek, C. Hebert et al., Nuclear ??-adrenergic receptors modulate gene expression in adult rat heart, Cellular Signalling, vol.23, issue.1, pp.89-98, 2011.
DOI : 10.1016/j.cellsig.2010.08.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053815

C. Cardenas, J. Liberona, J. Molgo, C. Colasante, G. Mignery et al., Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation, Journal of Cell Science, vol.118, issue.14, pp.3131-3140, 2005.
DOI : 10.1242/jcs.02446

URL : https://hal.archives-ouvertes.fr/hal-00098663

F. Bouzegrhane and G. Thibault, Is angiotensin II a proliferative factor of cardiac fibroblasts?, Cardiovascular Research, vol.53, issue.2, pp.304-312, 2002.
DOI : 10.1016/S0008-6363(01)00448-5

D. Li, S. Fareh, T. Leung, and S. Nattel, Promotion of Atrial Fibrillation by Heart Failure in Dogs : Atrial Remodeling of a Different Sort, Circulation, vol.100, issue.1, pp.87-95, 1999.
DOI : 10.1161/01.CIR.100.1.87

P. Gal and N. Marrouche, Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome, European Heart Journal, vol.38, issue.1, pp.14-19, 2017.
DOI : 10.1093/eurheartj/ehv514

D. Li, K. Shinagawa, L. Pang, T. Leung, S. Cardin et al., Effects of Angiotensin-Converting Enzyme Inhibition on the Development of the Atrial Fibrillation Substrate in Dogs With Ventricular Tachypacing-Induced Congestive Heart Failure, Circulation, vol.104, issue.21, pp.2608-2614, 2001.
DOI : 10.1161/hc4601.099402

J. Andrade, P. Khairy, D. Dobrev, and S. Nattel, The Clinical Profile and Pathophysiology of Atrial Fibrillation, Circulation Research, vol.114, issue.9, pp.1453-1468, 2014.
DOI : 10.1161/CIRCRESAHA.114.303211

J. Heijman, V. Algalarrondo, N. Voigt, J. Melka, X. Wehrens et al., The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis, Cardiovascular Research, vol.109, issue.4, pp.467-479, 2016.
DOI : 10.1093/cvr/cvv275

P. Abadir, D. Foster, M. Crow, C. Cooke, J. Rucker et al., Identification and characterization of a functional mitochondrial angiotensin system, Proceedings of the National Academy of Sciences, vol.76, issue.1, pp.14849-14854, 2011.
DOI : 10.1016/S0006-3495(99)77214-0