M. Garcia-viloca, J. Gao, M. Karplus, and D. Truhlar, How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations, Science, vol.303, issue.5655, pp.186-195, 2004.
DOI : 10.1126/science.1088172

R. Wolfenden, Degrees of Difficulty of Water-Consuming Reactions in the Absence of Enzymes, Chemical Reviews, vol.106, issue.8, pp.3379-3396, 2006.
DOI : 10.1021/cr050311y

G. Hammes, Y. Chang, and T. Oas, Conformational selection or induced fit: A flux description of reaction mechanism, Proceedings of the National Academy of Sciences, vol.312, issue.5771, pp.13737-13741, 2009.
DOI : 10.1126/science.1124964

K. Henzler-wildman and D. Kern, Dynamic personalities of proteins, Nature, vol.124, issue.7172, pp.964-972, 2007.
DOI : 10.1038/nature06522

E. Watt, H. Shimada, E. Kovrigin, and J. Loria, The mechanism of rate-limiting motions in enzyme function, Proceedings of the National Academy of Sciences, vol.123, issue.5, pp.11981-11986, 2007.
DOI : 10.1021/ja003447g

D. Boehr, Promiscuity in protein-RNA interactions: Conformational ensembles facilitate molecular recognition in the spliceosome, BioEssays, vol.319, issue.3, pp.174-180, 2012.
DOI : 10.1126/science.1152621

R. Berlow, M. Swain, S. Dalal, J. Sweasy, and J. Loria, Substrate-Dependent Millisecond Domain Motions in DNA Polymerase ??, Journal of Molecular Biology, vol.419, issue.3-4, pp.171-182, 2012.
DOI : 10.1016/j.jmb.2012.03.013

L. Kay, NMR studies of protein structure and dynamics, Journal of Magnetic Resonance, vol.173, issue.2, pp.193-207, 2005.
DOI : 10.1016/j.jmr.2004.11.021

P. Vallurupalli, D. Hansen, and L. Kay, Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy, Proceedings of the National Academy of Sciences, vol.127, issue.44, pp.11766-11771, 2008.
DOI : 10.1021/ja054550e

A. Ramanathan, A. Savol, V. Burger, C. Chennubhotla, and P. Agarwal, Protein Conformational Populations and Functionally Relevant Substates, Accounts of Chemical Research, vol.47, issue.1, pp.149-156, 2014.
DOI : 10.1021/ar400084s

A. Vanwart, J. Eargle, Z. Luthey-schulten, and R. Amaro, Exploring Residue Component Contributions to Dynamical Network Models of Allostery, Journal of Chemical Theory and Computation, vol.8, issue.8, pp.2949-2961, 2012.
DOI : 10.1021/ct300377a

D. Gagné, L. Charest, S. Morin, E. Kovrigin, and N. Doucet, Conservation of Flexible Residue Clusters among Structural and Functional Enzyme Homologues, Journal of Biological Chemistry, vol.78, issue.53, pp.44289-44300, 2012.
DOI : 10.1093/nar/gkl092

E. Eisenmesser, O. Millet, W. Labeikovsky, D. Korzhnev, M. Wolf-watz et al., Intrinsic dynamics of an enzyme underlies catalysis, Nature, vol.6, issue.7064, pp.117-121, 2005.
DOI : 10.1023/A:1008355631073

N. Goodey and S. Benkovic, Allosteric regulation and catalysis emerge via a common route, Nature Chemical Biology, vol.84, issue.8, pp.474-482, 2008.
DOI : 10.1038/nchembio.98

G. Suel, S. Lockless, M. Wall, and R. Ranganathan, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nature Structural Biology, vol.10, issue.1, pp.59-69, 2003.
DOI : 10.1038/nsb881

K. Reynolds, R. Mclaughlin, and R. Ranganathan, Hot Spots for Allosteric Regulation on Protein Surfaces, Cell, vol.147, issue.7, pp.1564-1575, 2011.
DOI : 10.1016/j.cell.2011.10.049

URL : http://doi.org/10.1016/j.cell.2011.10.049

D. Gagné and N. Doucet, Structural and functional importance of local and global conformational fluctuations in the RNase?A superfamily, FEBS Journal, vol.23, issue.22, pp.5596-5607, 2013.
DOI : 10.1093/bioinformatics/btm404

V. Pareek, M. Samanta, N. Joshi, H. Balaram, M. Murthy et al., Connecting Active-Site Loop Conformations and Catalysis in Triosephosphate Isomerase: Insights from a Rare Variation at Residue???96 in the Plasmodial Enzyme, ChemBioChem, vol.66, issue.7, 2016.
DOI : 10.1107/S0907444910007493

V. Torbeev, H. Raghuraman, D. Hamelberg, M. Tonelli, W. Westler et al., Protein conformational dynamics in the mechanism of HIV-1 protease catalysis, Proceedings of the National Academy of Sciences, vol.102, issue.12, pp.20982-20987, 2011.
DOI : 10.1021/cr010167q

G. Kar, O. Keskin, A. Gursoy, and R. Nussinov, Allostery and population shift in drug discovery, Current Opinion in Pharmacology, vol.10, issue.6, pp.715-722, 2010.
DOI : 10.1016/j.coph.2010.09.002

P. Agarwal, Enzymes: An integrated view of structure, dynamics and function, Microb Cell Fact, vol.5, issue.2, p.16409630, 2006.

A. Kohen, Role of Dynamics in Enzyme Catalysis: Substantial versus Semantic Controversies, Accounts of Chemical Research, vol.48, issue.2, pp.466-473, 2015.
DOI : 10.1021/ar500322s

S. Kamerlin and A. Warshel, At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?, Proteins: Structure, Function, and Bioinformatics, vol.105, pp.1339-1375, 2010.
DOI : 10.1110/ps.9.1.10

Z. Nagel and J. Klinman, A 21st century revisionist's view at a turning point in enzymology, Nature Chemical Biology, vol.24, issue.8, pp.543-550, 2009.
DOI : 10.1016/0304-4173(85)90014-X

P. Hanoian, C. Liu, S. Hammes-schiffer, and S. Benkovic, Perspectives on Electrostatics and Conformational Motions in Enzyme Catalysis, Accounts of Chemical Research, vol.48, issue.2, pp.482-489, 2015.
DOI : 10.1021/ar500390e

URL : http://doi.org/10.1021/ar500390e

S. Grutsch, S. Bruschweiler, and M. Tollinger, NMR Methods to Study Dynamic Allostery, PLOS Computational Biology, vol.8, issue.9, 2016.
DOI : 10.1371/journal.pcbi.1004620.g005

URL : http://doi.org/10.1371/journal.pcbi.1004620

A. Palmer, Chemical exchange in biomacromolecules: Past, present, and future, Journal of Magnetic Resonance, vol.241, pp.3-17, 2014.
DOI : 10.1016/j.jmr.2014.01.008

I. Kleckner and M. Foster, An introduction to NMR-based approaches for measuring protein dynamics, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.8, pp.942-968, 2011.
DOI : 10.1016/j.bbapap.2010.10.012

J. Loria, M. Rance, and A. Palmer, A trosy cpmg sequence for characterizing chemical exchange in large proteins, Journal of Biomolecular NMR, vol.15, issue.2, pp.151-155, 1999.
DOI : 10.1023/A:1008355631073

J. Loria, M. Rance, and A. Palmer, A Relaxation-Compensated Carr???Purcell???Meiboom???Gill Sequence for Characterizing Chemical Exchange by NMR Spectroscopy, Journal of the American Chemical Society, vol.121, issue.10, pp.2331-2332, 1999.
DOI : 10.1021/ja983961a

D. Oyen, R. Fenwick, R. Stanfield, H. Dyson, and P. Wright, Dihydrofolate Reductase via an Allosteric Pathway, Journal of the American Chemical Society, vol.137, issue.29, pp.9459-9468, 2015.
DOI : 10.1021/jacs.5b05707

URL : http://doi.org/10.1021/jacs.5b05707

G. Bhabha, J. Biel, and J. Fraser, Keep on Moving: Discovering and Perturbing the Conformational Dynamics of Enzymes, Accounts of Chemical Research, vol.48, issue.2, pp.423-430, 2015.
DOI : 10.1021/ar5003158

N. Doucet, Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments, Protein & Peptide Letters, vol.18, issue.4, pp.336-343, 2011.
DOI : 10.2174/092986611794653950

URL : https://hal.archives-ouvertes.fr/pasteur-00722221

A. Palmer, NMR Probes of Molecular Dynamics: Overview and Comparison with Other Techniques, Annual Review of Biophysics and Biomolecular Structure, vol.30, issue.1, pp.129-155, 2001.
DOI : 10.1146/annurev.biophys.30.1.129

A. Palmer, NMR Characterization of the Dynamics of Biomacromolecules, Chemical Reviews, vol.104, issue.8, pp.3623-3640, 2004.
DOI : 10.1021/cr030413t

G. Manley and J. Loria, NMR insights into protein allostery, Archives of Biochemistry and Biophysics, vol.519, issue.2, pp.223-231, 2012.
DOI : 10.1016/j.abb.2011.10.023

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086649

L. Luk, E. Loveridge, and R. Allemann, Protein motions and dynamic effects in enzyme catalysis, Phys. Chem. Chem. Phys., vol.109, issue.46, pp.30817-30827, 2015.
DOI : 10.1073/pnas.1202808109

URL : http://orca.cf.ac.uk/73319/1/Luk%20et%20al%202015.pdf

G. Lipari and A. Szabo, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity, Journal of the American Chemical Society, vol.104, issue.17, pp.4546-4559, 1982.
DOI : 10.1021/ja00381a009

G. Lipari and A. Szabo, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results, Journal of the American Chemical Society, vol.104, issue.17, pp.4559-4570, 1982.
DOI : 10.1021/ja00381a010

S. Morin, A practical guide to protein dynamics from 15N spin relaxation in solution, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.59, issue.3, pp.245-262, 2011.
DOI : 10.1016/j.pnmrs.2010.12.003

O. Fisette, P. Lagüe, S. Gagné, and S. Morin, Synergistic Applications of MD and NMR for the Study of Biological Systems, Journal of Biomedicine and Biotechnology, vol.43, issue.4, p.254208, 2012.
DOI : 10.1016/j.jsb.2010.11.005

A. Mandel, M. Akke, and A. Palmer, Backbone Dynamics ofEscherichia coliRibonuclease HI: Correlations with Structure and Function in an Active Enzyme, Journal of Molecular Biology, vol.246, issue.1, pp.144-163, 1995.
DOI : 10.1006/jmbi.1994.0073

J. Stephenson, J. Kenyon, M. Symmons, and A. Lever, Characterizing 3D RNA structure by single molecule FRET. Methods, 2016.
DOI : 10.1016/j.ymeth.2016.02.004

X. Huang, I. De-vera, A. Veloro, M. Blackburn, J. Kear et al., Inhibitor-Induced Conformational Shifts and Ligand-Exchange Dynamics for HIV-1 Protease Measured by Pulsed EPR and NMR Spectroscopy, The Journal of Physical Chemistry B, vol.116, issue.49, pp.14235-14244, 2012.
DOI : 10.1021/jp308207h

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709468

X. Huang, M. Britto, J. Kear-scott, C. Boone, J. Rocca et al., The Role of Select Subtype Polymorphisms on HIV-1 Protease Conformational Sampling and Dynamics, Journal of Biological Chemistry, vol.113, issue.24, pp.17203-17214, 2014.
DOI : 10.1016/j.bmcl.2006.01.035

G. Jeschke and Y. Polyhach, Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance, Physical Chemistry Chemical Physics, vol.110, issue.16, pp.1895-1910, 2007.
DOI : 10.1016/j.jmr.2006.02.002

D. Boehr, D. Mcelheny, H. Dyson, and P. Wright, Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands, Proceedings of the National Academy of Sciences, vol.14, issue.1, pp.1373-1378, 2010.
DOI : 10.1016/0263-7855(96)00009-4

D. Boehr, X. Liu, and X. Yang, Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies, Current Opinion in Virology, vol.9, pp.194-200, 2014.
DOI : 10.1016/j.coviro.2014.08.006

V. Voelz, G. Bowman, K. Beauchamp, and V. Pande, Protein Folding for a Millisecond Folder NTL9(1???39), Journal of the American Chemical Society, vol.132, issue.5, pp.1526-1528, 2010.
DOI : 10.1021/ja9090353

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835335

V. Voelz, M. Jager, S. Yao, Y. Chen, L. Zhu et al., Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment, Journal of the American Chemical Society, vol.134, issue.30, pp.12565-12577, 2012.
DOI : 10.1021/ja302528z

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462454

D. Shaw, P. Maragakis, K. Lindorff-larsen, S. Piana, R. Dror et al., Atomic-Level Characterization of the Structural Dynamics of Proteins, Science, vol.18, issue.8, pp.341-346, 2010.
DOI : 10.1002/pro.172

D. Bucher, B. Grant, P. Markwick, and J. Mccammon, Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics, PLoS Computational Biology, vol.49, issue.3, p.1002034, 2011.
DOI : 10.1371/journal.pcbi.1002034.t002

D. Hamelberg, J. Mongan, and J. Mccammon, Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules, The Journal of Chemical Physics, vol.23, issue.24, pp.11919-11929, 2004.
DOI : 10.2307/2346830

W. Wojtas-niziurski, Y. Meng, B. Roux, and S. Berneche, Self-Learning Adaptive Umbrella Sampling Method for the Determination of Free Energy Landscapes in Multiple Dimensions, Journal of Chemical Theory and Computation, vol.9, issue.4, pp.1885-1895, 2013.
DOI : 10.1021/ct300978b

L. Da, D. Wang, and X. Huang, Dynamics of Pyrophosphate Ion Release and Its Coupled Trigger Loop Motion from Closed to Open State in RNA Polymerase II, Journal of the American Chemical Society, vol.134, issue.4, pp.2399-2406, 2012.
DOI : 10.1021/ja210656k

A. Tagle, Percutaneous encoscopic gastrostomy, Rev Gastroenterol Peru, vol.18, pp.56-61, 1998.

L. Sutto and F. Gervasio, Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase, Proceedings of the National Academy of Sciences, vol.126, issue.1, pp.10616-10621, 2013.
DOI : 10.1063/1.2408420

C. Abrams and G. Bussi, Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration, Entropy, vol.180, issue.1, pp.163-199, 2014.
DOI : 10.1016/j.cpc.2013.09.018

URL : http://doi.org/10.3390/e16010163

U. Doshi and D. Hamelberg, Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1850, issue.5, pp.878-888, 2015.
DOI : 10.1016/j.bbagen.2014.08.003

U. Doshi, L. Mcgowan, S. Ladani, and D. Hamelberg, Resolving the complex role of enzyme conformational dynamics in catalytic function, Proceedings of the National Academy of Sciences, vol.64, issue.1, pp.5699-5704, 2012.
DOI : 10.1063/1.432601

G. Torrie and J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, vol.23, issue.2, pp.187-199, 1977.
DOI : 10.1016/0021-9991(77)90121-8

C. Camilloni, D. Schaal, K. Schweimer, S. Schwarzinger, D. Simone et al., Energy Landscape of the Prion Protein Helix 1 Probed by Metadynamics and NMR, Biophysical Journal, vol.102, issue.1, pp.158-167, 2012.
DOI : 10.1016/j.bpj.2011.12.003

O. Andersen, J. Grouleff, P. Needham, R. Walker, and F. Jensen, Toward an Enhanced Sampling Molecular Dynamics Method for Studying Ligand-Induced Conformational Changes in Proteins, The Journal of Physical Chemistry B, vol.119, issue.46, pp.14594-14603, 2015.
DOI : 10.1021/acs.jpcb.5b07816

N. Singhal, C. Snow, and V. Pande, Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin, The Journal of Chemical Physics, vol.101, issue.1, pp.415-425, 2004.
DOI : 10.1063/1.1738647

G. Bowman, K. Beauchamp, G. Boxer, and V. Pande, Progress and challenges in the automated construction of Markov state models for full protein systems, The Journal of Chemical Physics, vol.131, issue.12, p.124101, 2009.
DOI : 10.1063/1.3192309

F. Noé and S. Fischer, Transition networks for modeling the kinetics of conformational change in macromolecules, Current Opinion in Structural Biology, vol.18, issue.2, pp.154-162, 2008.
DOI : 10.1016/j.sbi.2008.01.008

A. Ramanathan and P. Agarwal, Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis, PLoS Biology, vol.43, issue.1, p.1001193, 2011.
DOI : 10.1371/journal.pbio.1001193.s029

D. Shukla, C. Hernandez, J. Weber, and V. Pande, Markov State Models Provide Insights into Dynamic Modulation of Protein Function, Accounts of Chemical Research, vol.48, issue.2, pp.414-422, 2015.
DOI : 10.1021/ar5002999

URL : http://doi.org/10.1021/ar5002999

J. Chodera and F. Noe, Markov state models of biomolecular conformational dynamics, Current Opinion in Structural Biology, vol.25, pp.135-144, 2014.
DOI : 10.1016/j.sbi.2014.04.002

F. Morcos, S. Chatterjee, C. Mcclendon, P. Brenner, R. Lopez-rendon et al., Modeling Conformational Ensembles of Slow Functional Motions in Pin1-WW, PLoS Computational Biology, vol.13, issue.12, p.1001015, 2010.
DOI : 10.1371/journal.pcbi.1001015.s016

A. Ramanathan, A. Savol, C. Langmead, P. Agarwal, and C. Chennubhotla, Discovering Conformational Sub-States Relevant to Protein Function, PLoS ONE, vol.86, issue.1, p.15827, 2011.
DOI : 10.1371/journal.pone.0015827.s016

URL : http://doi.org/10.1016/j.bpj.2010.12.1162

D. Gagné, R. French, C. Narayanan, M. Simonovic, P. Agarwal et al., Perturbation of the Conformational Dynamics of an Active-Site Loop Alters Enzyme Activity, Structure, vol.23, issue.12, pp.2256-2266, 2015.
DOI : 10.1016/j.str.2015.10.011

C. Camilloni, P. Robustelli, D. Simone, A. Cavalli, A. Vendruscolo et al., Characterization of the Conformational Equilibrium between the Two Major Substates of RNase A Using NMR Chemical Shifts, Journal of the American Chemical Society, vol.134, issue.9, pp.3968-3971, 2012.
DOI : 10.1021/ja210951z

D. Simone, A. Montalvao, R. Dobson, C. Vendruscolo, and M. , Characterization of the Interdomain Motions in Hen Lysozyme Using Residual Dipolar Couplings as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations, Biochemistry, vol.52, issue.37, pp.6480-6486, 2013.
DOI : 10.1021/bi4007513

C. Camilloni, A. Cavalli, and M. Vendruscolo, Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins, The Journal of Physical Chemistry B, vol.117, issue.6, pp.1838-1843, 2013.
DOI : 10.1021/jp3106666

W. Sundquist and H. Krausslich, HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med, p.6924, 2012.
DOI : 10.1101/cshperspect.a015420

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405834

A. Ghosh, H. Osswald, and G. Prato, Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS, Journal of Medicinal Chemistry, vol.59, issue.11, 2016.
DOI : 10.1021/acs.jmedchem.5b01697

S. Spinelli, Q. Liu, P. Alzari, P. Hirel, and R. Poljak, The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU, Biochimie, vol.73, issue.11, pp.1391-1396, 1991.
DOI : 10.1016/0300-9084(91)90169-2

N. Pastor and C. Amero, Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations, Frontiers in Plant Science, vol.25, p.306, 2015.
DOI : 10.1016/j.sbi.2014.01.004

URL : http://doi.org/10.3389/fpls.2015.00306

L. Nicholson, T. Yamazaki, D. Torchia, S. Grzesiek, A. Bax et al., Flexibility and function in HIV-1 protease, Nature Structural & Molecular Biology, vol.113, issue.4, pp.274-280, 1995.
DOI : 10.1107/S0021889891004399

R. Ishima and J. Louis, A diverse view of protein dynamics from NMR studies of HIV-1 protease flaps, Proteins: Structure, Function, and Bioinformatics, vol.147, issue.4, pp.1408-1415, 2008.
DOI : 10.1002/prot.21632

J. Xia, N. Deng, and R. Levy, NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model-Free Framework and Markov State Simulations, The Journal of Physical Chemistry B, vol.117, issue.22, pp.6625-6634, 2013.
DOI : 10.1021/jp400797y

R. Ishima, D. Torchia, S. Lynch, A. Gronenborn, and J. Louis, Solution Structure of the Mature HIV-1 Protease Monomer, Journal of Biological Chemistry, vol.62, issue.44, pp.43311-43319, 2003.
DOI : 10.1074/jbc.274.31.21539

N. Deng, W. Zheng, E. Gallicchio, and R. Levy, Insights into the Dynamics of HIV-1 Protease: A Kinetic Network Model Constructed from Atomistic Simulations, Journal of the American Chemical Society, vol.133, issue.24, pp.9387-9394, 2011.
DOI : 10.1021/ja2008032

D. Shukla, Y. Meng, B. Roux, and V. Pande, Activation pathway of Src kinase reveals intermediate states as targets for drug design, Nature Communications, vol.123, p.3397, 2014.
DOI : 10.1063/1.2116947

J. Roche, J. Louis, and A. Bax, Conformation of Inhibitor-Free HIV-1 Protease Derived from NMR Spectroscopy in a Weakly Oriented Solution, ChemBioChem, vol.48, issue.2, pp.214-218, 2015.
DOI : 10.1007/s10858-010-9441-9

T. Yamazaki, A. Hinck, Y. Wang, L. Nicholson, D. Torchia et al., Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear magnetic resonance spectroscopy, Protein Science, vol.116, issue.3, pp.495-506, 1996.
DOI : 10.1002/pro.5560050311

G. Leonis, T. Steinbrecher, and M. Papadopoulos, A Contribution to the Drug Resistance Mechanism of Darunavir, Amprenavir, Indinavir, and Saquinavir Complexes with HIV-1 Protease Due to Flap Mutation I50V: A Systematic MM?PBSA and Thermodynamic Integration Study, Journal of Chemical Information and Modeling, vol.53, issue.8, pp.2141-2153, 2013.
DOI : 10.1021/ci4002102

A. Gupta, S. Jamal, S. Goyal, R. Jain, D. Wahi et al., Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease, BMC Bioinformatics, vol.16, issue.Suppl 19, p.10, 2015.
DOI : 10.1186/1471-2105-16-S19-S10

S. Mittal, Y. Cai, M. Nalam, D. Bolon, and C. Schiffer, Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease, Journal of the American Chemical Society, vol.134, issue.9, pp.4163-4168, 2012.
DOI : 10.1021/ja2095766

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391577

N. Goldfarb, M. Ohanessian, S. Biswas, T. Mcgee, . Jr et al., Defective Hydrophobic Sliding Mechanism and Active Site Expansion in HIV-1 Protease Drug Resistant Variant Gly48Thr/Leu89Met: Mechanisms for the Loss of Saquinavir Binding Potency, Biochemistry, vol.54, issue.2, pp.422-433, 2015.
DOI : 10.1021/bi501088e

J. Lee and N. Goodey, Catalytic Contributions from Remote Regions of Enzyme Structure, Chemical Reviews, vol.111, issue.12, pp.7595-7624, 2011.
DOI : 10.1021/cr100042n

T. Wu, C. Schiffer, M. Gonzales, J. Taylor, R. Kantor et al., Mutation Patterns and Structural Correlates in Human Immunodeficiency Virus Type 1 Protease following Different Protease Inhibitor Treatments, Journal of Virology, vol.77, issue.8, pp.4836-4847, 2003.
DOI : 10.1128/JVI.77.8.4836-4847.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152121

D. Ragland, E. Nalivaika, M. Nalam, K. Prachanronarong, H. Cao et al., Drug Resistance Conferred by Mutations Outside the Active Site through Alterations in the Dynamic and Structural Ensemble of HIV-1 Protease, Journal of the American Chemical Society, vol.136, issue.34, pp.11956-11963, 2014.
DOI : 10.1021/ja504096m

H. Tzoupis, G. Leonis, A. Avramopoulos, T. Mavromoustakos, and M. Papadopoulos, Systematic Molecular Dynamics, MM?PBSA, and Ab Initio Approaches to the Saquinavir Resistance Mechanism in HIV-1 PR Due to 11 Double and Multiple Mutations, The Journal of Physical Chemistry B, vol.118, issue.32, pp.9538-9552, 2014.
DOI : 10.1021/jp502687q

J. Carter, E. Gonzales, X. Huang, A. Smith, I. Vera et al., Effects of PRE and POST therapy drug-pressure selected mutations on HIV-1 protease conformational sampling, FEBS Letters, vol.37, issue.17, pp.3123-3128, 2014.
DOI : 10.1021/bi9716074

J. Kunze, N. Todoroff, P. Schneider, T. Rodrigues, T. Geppert et al., Targeting Dynamic Pockets of HIV-1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors, Journal of Chemical Information and Modeling, vol.54, issue.3, pp.987-991, 2014.
DOI : 10.1021/ci400712h

P. Ung, J. Dunbar, . Jr, J. Gestwicki, and H. Carlson, An Allosteric Modulator of HIV-1 Protease Shows Equipotent Inhibition of Wild-Type and Drug-Resistant Proteases, Journal of Medicinal Chemistry, vol.57, issue.15, pp.6468-6478, 2014.
DOI : 10.1021/jm5008352

W. Beard and S. Wilson, Structure and Mechanism of DNA Polymerase ?, Chemical Reviews, vol.106, issue.2, pp.361-382, 2006.
DOI : 10.1021/cr0404904

D. Barnes and T. Lindahl, Repair and Genetic Consequences of Endogenous DNA Base Damage in Mammalian Cells, Annual Review of Genetics, vol.38, issue.1, pp.445-476, 2004.
DOI : 10.1146/annurev.genet.38.072902.092448

D. Starcevic, S. Dalal, and J. Sweasy, Is there a link between DNA polymerase ? and cancer? Cell Cycle, pp.998-1001, 2004.

L. Loeb, R. Monnat, and . Jr, DNA polymerases and human disease, Nature Reviews Genetics, vol.6, issue.8, pp.594-604, 2008.
DOI : 10.4161/cc.3.8.1062

W. Beard, D. Shock, X. Yang, S. Delauder, and S. Wilson, Loss of DNA Polymerase ? Stacking Interactions with Templating Purines, but Not Pyrimidines, Alters Catalytic Efficiency and Fidelity, Journal of Biological Chemistry, vol.262, issue.10, pp.8235-8242, 2002.
DOI : 10.1016/S0076-6879(97)77028-9

J. Towle-weicksel, S. Dalal, C. Sohl, S. Doublie, K. Anderson et al., Fluorescence Resonance Energy Transfer Studies of DNA Polymerase ?, Journal of Biological Chemistry, vol.10, issue.23, pp.16541-16550, 2014.
DOI : 10.1016/j.str.2006.01.011

B. Moscato, M. Swain, and J. Loria, Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase ??, Biochemistry, vol.55, issue.2, pp.382-395, 2016.
DOI : 10.1021/acs.biochem.5b01213

M. Sawaya, H. Pelletier, A. Kumar, S. Wilson, and J. Kraut, Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism, Science, vol.264, issue.5167, pp.1930-1935, 1994.
DOI : 10.1126/science.7516581

V. Batra, W. Beard, D. Shock, J. Krahn, L. Pedersen et al., Magnesium-Induced Assembly of a Complete DNA Polymerase Catalytic Complex, Structure, vol.14, issue.4, pp.757-766, 2006.
DOI : 10.1016/j.str.2006.01.011

V. Batra, W. Beard, D. Shock, L. Pedersen, and S. Wilson, Structures of DNA Polymerase ? with Active-Site Mismatches Suggest a Transient Abasic Site Intermediate during Misincorporation, Molecular Cell, vol.30, issue.3, pp.315-324, 2008.
DOI : 10.1016/j.molcel.2008.02.025

B. Freudenthal, W. Beard, and S. Wilson, Structures of dNTP Intermediate States during DNA Polymerase Active Site Assembly, Structure, vol.20, issue.11, pp.1829-1837, 2012.
DOI : 10.1016/j.str.2012.08.008

URL : http://doi.org/10.1016/j.str.2012.08.008

B. Freudenthal, W. Beard, D. Shock, and S. Wilson, Observing a DNA Polymerase Choose Right from Wrong, Cell, vol.154, issue.1, pp.157-168, 2013.
DOI : 10.1016/j.cell.2013.05.048

URL : http://doi.org/10.1016/j.cell.2013.05.048

K. Donigan, K. Sun, A. Nemec, D. Murphy, X. Cong et al., Gene Is Mutated in High Percentage of Colorectal Tumors, Journal of Biological Chemistry, vol.52, issue.28, pp.23830-23839, 2012.
DOI : 10.1074/jbc.M112.362111

W. Beard, D. Shock, V. Batra, R. Prasad, and S. Wilson, Substrate-induced DNA Polymerase ?? Activation, Journal of Biological Chemistry, vol.275, issue.45, pp.31411-31422, 2014.
DOI : 10.1016/j.dnarep.2014.07.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223340

S. Kirmizialtin, V. Nguyen, K. Johnson, and R. Elber, How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations, Structure, vol.20, issue.4, pp.618-627, 2012.
DOI : 10.1016/j.str.2012.02.018

URL : http://doi.org/10.1016/j.str.2012.02.018

P. Balbo, E. Wang, and M. Tsai, Kinetic Mechanism of Active Site Assembly and Chemical Catalysis of DNA Polymerase ??, Biochemistry, vol.50, issue.45, pp.9865-9875, 2011.
DOI : 10.1021/bi200954r

M. Williamson, Using chemical shift perturbation to characterise ligand binding, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.73, pp.1-16, 2013.
DOI : 10.1016/j.pnmrs.2013.02.001