M. Hediger, B. Clemencon, and R. Burrier, The ABCs of membrane transporters in health and disease (SLC series): Introduction, Molecular Aspects of Medicine, vol.34, issue.2-3, pp.95-107, 2013.
DOI : 10.1016/j.mam.2012.12.009

A. Illing, A. Shawki, and C. Cunningham, Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1, Journal of Biological Chemistry, vol.21, issue.36, pp.30485-30496, 2012.
DOI : 10.1152/ajpcell.00054.2010

M. Cellier, Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import, AIMS Biophysics, vol.3, issue.2, pp.286-318, 2013.
DOI : 10.3934/biophy.2016.2.286

URL : https://hal.archives-ouvertes.fr/pasteur-01535408

I. Braasch, A. Gehrke, and J. Smith, The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons, Nature Genetics, vol.47, issue.4, pp.427-437, 2016.
DOI : 10.1186/gb-2010-11-10-r106

URL : http://www.nature.com/ng/journal/v48/n4/pdf/ng.3526.pdf

M. Cellier, P. Courville, and C. Campion, Nramp1 phagocyte intracellular metal withdrawal defense, Microbes and Infection, vol.9, issue.14-15, pp.1662-1670, 2007.
DOI : 10.1016/j.micinf.2007.09.006

S. Vidal, D. Malo, and K. Vogan, Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg, Cell, vol.73, issue.3, pp.469-485, 1993.
DOI : 10.1016/0092-8674(93)90135-D

B. Peracino, C. Wagner, and A. Balest, Function and Mechanism of Action of Dictyostelium Nramp1 (Slc11a1) in Bacterial Infection, Traffic, vol.205, issue.1, pp.22-38, 2006.
DOI : 10.1091/mbc.7.2.261

I. Ehrnstorfer, E. Geertsma, and E. Pardon, Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport, Nature Structural & Molecular Biology, vol.93, issue.11, pp.990-996, 2014.
DOI : 10.1073/pnas.93.23.13362

A. Vastermark, S. Wollwage, and M. Houle, Expansion of the APC superfamily of secondary carriers, Proteins: Structure, Function, and Bioinformatics, vol.193, issue.2-3, pp.2797-2811, 2014.
DOI : 10.1128/JB.01397-10

A. Yamashita, S. Singh, and T. Kawate, Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters, Nature, vol.279, issue.7056, pp.215-223, 2005.
DOI : 10.1021/bi030161q

L. Forrest, Structural Symmetry in Membrane Proteins, Annual Review of Biophysics, vol.44, issue.1, pp.311-337, 2015.
DOI : 10.1146/annurev-biophys-051013-023008

M. Cellier, Nutritional Immunity: Homology Modeling of Nramp Metal Import, Adv Exp Med Biol, vol.946, pp.335-351, 2012.
DOI : 10.1007/978-1-4614-0106-3_19

Y. Shi, Common Folds and Transport Mechanisms of Secondary Active Transporters, Annual Review of Biophysics, vol.42, issue.1, pp.51-72, 2013.
DOI : 10.1146/annurev-biophys-083012-130429

L. Kowalczyk, M. Ratera, and A. Paladino, Molecular basis of substrate-induced permeation by an amino acid antiporter, Proceedings of the National Academy of Sciences, vol.459, issue.7245, pp.3935-3940, 2011.
DOI : 10.1038/nature08143

H. Krishnamurthy, C. Piscitelli, and E. Gouaux, Unlocking the molecular secrets of sodium-coupled transporters, Nature, vol.30, issue.7245, pp.347-355, 2009.
DOI : 10.1038/nature08143

L. Forrest, R. Kramer, and C. Ziegler, The structural basis of secondary active transport mechanisms, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.2, pp.167-188, 2011.
DOI : 10.1016/j.bbabio.2010.10.014

S. Faham, A. Watanabe, and G. Besserer, The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport, Science, vol.46, issue.44, pp.810-814, 2008.
DOI : 10.1074/jbc.M308253200

S. Weyand, T. Shimamura, and S. Yajima, Structure and Molecular Mechanism of a Nucleobase-Cation-Symport-1 Family Transporter, Science, vol.50, issue.1, pp.709-713, 2008.
DOI : 10.1007/BF00872218

S. Ressl, T. Van-scheltinga, A. Vonrhein, and C. , Molecular basis of transport and regulation in the Na+/betaine symporter BetP, Nature, vol.50, issue.7234, pp.47-52, 2009.
DOI : 10.1161/01.HYP.16.6.595

X. Gao, F. Lu, and L. Zhou, Structure and Mechanism of an Amino Acid Antiporter, Science, vol.211, issue.5052, pp.1565-1568, 2009.
DOI : 10.1038/211969a0

P. Shaffer, A. Goehring, and A. Shankaranarayanan, Structure and Mechanism of a Na+-Independent Amino Acid Transporter, Science, vol.61, issue.4, pp.1010-1014, 2009.
DOI : 10.1002/prot.20660

Y. Fang, H. Jayaram, and T. Shane, Structure of a prokaryotic virtual proton pump at 3.2????? resolution, Nature, vol.52, pp.1040-1043, 2009.
DOI : 10.1042/bj3360069

X. Gao, L. Zhou, and X. Jiao, Mechanism of substrate recognition and transport by an amino acid antiporter, Nature, vol.31, issue.7282, pp.828-832, 2010.
DOI : 10.1099/00221287-146-8-1797

L. Tang, L. Bai, and W. Wang, Crystal structure of the carnitine transporter and insights into the antiport mechanism, Nature Structural & Molecular Biology, vol.37, issue.4, pp.492-496, 2010.
DOI : 10.1128/jb.178.17.5071-5079.1996

T. Shimamura, S. Weyand, and O. Beckstein, Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1, Science, vol.24, issue.6, pp.470-473, 2010.
DOI : 10.1152/physiol.00030.2009

S. Schulze, S. Koster, and U. Geldmacher, Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT, Nature, vol.273, issue.7312, pp.233-236, 2010.
DOI : 10.1128/jb.177.16.4690-4695.1995

H. Krishnamurthy and E. Gouaux, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states, Nature, vol.66, issue.7382, pp.469-474, 2012.
DOI : 10.1107/S0907444909042073

D. Ma, P. Lu, and C. Yan, Structure and mechanism of a glutamate???GABA antiporter, Nature, vol.31, issue.7391, pp.632-636, 2012.
DOI : 10.1074/jbc.274.47.33244

K. Khafizov, C. Perez, and C. Koshy, Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP, Proceedings of the National Academy of Sciences, vol.106, issue.49, pp.3035-3044, 2012.
DOI : 10.1073/pnas.0908570106

C. Perez, B. Faust, and A. Mehdipour, Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling, Nature Communications, vol.14, p.4231, 2014.
DOI : 10.1016/0263-7855(96)00018-5

L. Malinauskaite, M. Quick, and L. Reinhard, A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters, Nature Structural & Molecular Biology, vol.98, issue.11, pp.1006-1012, 2014.
DOI : 10.1073/pnas.181342398

E. Gaucher, X. Gu, and M. Miyamoto, Predicting functional divergence in protein evolution by site-specific rate shifts, Trends in Biochemical Sciences, vol.27, issue.6, pp.315-321, 2002.
DOI : 10.1016/S0968-0004(02)02094-7

B. Knudsen, M. Miyamoto, and P. Laipis, Using Evolutionary Rates to Investigate Protein Functional Divergence and Conservation. A case study of the carbonic anhydrases, Genetics, vol.164, pp.1261-1269, 2003.

X. Gu, V. Velden, and K. , DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family, Bioinformatics, vol.18, issue.3, pp.500-501, 2002.
DOI : 10.1093/bioinformatics/18.3.500

X. Gu, Y. Zou, and Z. Su, An Update of DIVERGE Software for Functional Divergence Analysis of Protein Family, Molecular Biology and Evolution, vol.30, issue.7, pp.1713-1719, 2013.
DOI : 10.1093/molbev/mst069

J. Echave, S. Spielman, and C. Wilke, Causes of evolutionary rate variation among protein sites, Nature Reviews Genetics, vol.487, issue.2, pp.109-121, 2016.
DOI : 10.1093/molbev/msv167

J. Zhang and J. Yang, Determinants of the rate of protein sequence evolution, Nature Reviews Genetics, vol.13, issue.7, pp.409-420, 2015.
DOI : 10.1093/molbev/mst065

I. Sandler, N. Zigdon, and E. Levy, The functional importance of co-evolving residues in proteins, Cellular and Molecular Life Sciences, vol.454, issue.7201, pp.673-682, 2014.
DOI : 10.1038/nature07063

D. De-juan, F. Pazos, and A. Valencia, Emerging methods in protein co-evolution, Nature Reviews Genetics, vol.485, issue.4, pp.249-261, 2013.
DOI : 10.1371/journal.pgen.1000570

J. Shin, C. Wakeman, and J. Goodson, Transport of Magnesium by a Bacterial Nramp-Related Gene, PLoS Genetics, vol.30, issue.6, p.1004429, 2014.
DOI : 10.1371/journal.pgen.1004429.s008

P. Courville, E. Urbankova, and C. Rensing, Solute Carrier 11 Cation Symport Requires Distinct Residues in Transmembrane Helices 1 and 6, Journal of Biological Chemistry, vol.445, issue.15, pp.9651-9658, 2008.
DOI : 10.1016/S1359-6446(04)03363-X

M. Cellier, Nramp, Curr Top Membr, vol.69, pp.249-293, 2012.
DOI : 10.1016/B978-0-12-394390-3.00010-0

URL : https://hal.archives-ouvertes.fr/pasteur-01535407

E. Richer, P. Courville, and M. Cellier, Molecular Evolutionary Analysis of the Nramp Family, Molecular biology intelligence unit, pp.178-194, 2004.

E. Richer, P. Courville, and I. Bergevin, Horizontal Gene Transfer of ?Prototype? Nramp in Bacteria, Journal of Molecular Evolution, vol.57, issue.4, pp.363-376, 2003.
DOI : 10.1007/s00239-003-2472-z

J. Jenuth, The NCBI: Publicly Available Tools and Resources on the Web, Methods Mol Biol, vol.132, pp.301-312, 2000.
DOI : 10.1385/1-59259-192-2:301

A. Biegert, C. Mayer, and M. Remmert, The MPI Bioinformatics Toolkit for protein sequence analysis, Nucleic Acids Research, vol.34, issue.Web Server, pp.335-339, 2006.
DOI : 10.1093/nar/gkl217

K. Tamura, D. Peterson, and N. Peterson, MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2739, 2011.
DOI : 10.1093/molbev/msr121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203626

J. Thompson, T. Gibson, and D. Higgins, Multiple Sequence Alignment Using ClustalW and ClustalX, Curr Protoc Bioinform Chapter, vol.266, 2002.
DOI : 10.1016/S0076-6879(96)66024-8

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Molecular Biology and Evolution, vol.27, issue.2, pp.221-224, 2010.
DOI : 10.1093/molbev/msp259

URL : https://hal.archives-ouvertes.fr/lirmm-00705187

F. Burki, The Eukaryotic Tree of Life from a Global Phylogenomic Perspective, Cold Spring Harbor Perspectives in Biology, vol.6, issue.5, 2014.
DOI : 10.1101/cshperspect.a016147

E. Koonin, The origin and early evolution of eukaryotes in the light of phylogenomics, Genome Biology, vol.11, issue.5, p.209, 2010.
DOI : 10.1186/gb-2010-11-5-209

S. Adl, A. Simpson, and C. Lane, The Revised Classification of Eukaryotes, Journal of Eukaryotic Microbiology, vol.56, issue.5, pp.429-493, 2012.
DOI : 10.1016/j.ympev.2010.04.020

Z. Lin, J. Fernandez-robledo, and M. Cellier, Mediates Iron Uptake, Biochemistry, vol.50, issue.29, pp.6340-6355, 2011.
DOI : 10.1021/bi200343h

URL : https://hal.archives-ouvertes.fr/pasteur-00720832

S. Guindon, J. Dufayard, and V. Lefort, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

A. Shih, D. Lee, and C. Peng, Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences, BMC Bioinformatics, vol.8, issue.1, p.63, 2007.
DOI : 10.1186/1471-2105-8-63

P. Stansfeld, J. Goose, and M. Caffrey, MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes, Structure, vol.23, issue.7, pp.1350-1361, 2015.
DOI : 10.1016/j.str.2015.05.006

W. Delano, The PyMOL Molecular Graphics System. DeLano Scientific, 2002.

Y. Ye and A. Godzik, Flexible structure alignment by chaining aligned fragment pairs allowing twists, Bioinformatics, vol.19, issue.Suppl 2, pp.246-255, 2003.
DOI : 10.1093/bioinformatics/btg1086

U. Pieper, B. Webb, and D. Barkan, ModBase, a database of annotated comparative protein structure models, and associated resources, Nucleic Acids Research, vol.39, issue.Database, pp.465-474, 2011.
DOI : 10.1093/nar/gkq1091

URL : https://hal.archives-ouvertes.fr/pasteur-01414232

A. Narunsky, S. Nepomnyachiy, and H. Ashkenazy, ConTemplate Suggests Possible Alternative Conformations for a Query Protein of Known Structure, Structure, vol.23, issue.11, pp.2162-2170, 2015.
DOI : 10.1016/j.str.2015.08.018

M. Czachorowski, S. Lam-yuk-tseung, and M. Cellier, Transmembrane Topology of the Mammalian Slc11a2 Iron Transporter, Biochemistry, vol.48, issue.35, pp.8422-8434, 2009.
DOI : 10.1021/bi900606y

URL : https://hal.archives-ouvertes.fr/pasteur-00819949

J. Xia, N. Yamaji, and T. Kasai, Plasma membrane-localized transporter for aluminum in rice, Proceedings of the National Academy of Sciences, vol.143, issue.3, pp.18381-18385, 2010.
DOI : 10.1104/pp.106.093005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972927

M. Pottier, R. Oomen, and C. Picco, Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium, The Plant Journal, vol.271, issue.4, pp.625-637, 2015.
DOI : 10.1074/jbc.271.38.23203

S. Tavoulari, E. Margheritis, and A. Nagarajan, Sites Control Conformational Change in a Neurotransmitter Transporter Homolog, Journal of Biological Chemistry, vol.46, issue.3, pp.1456-1471, 2016.
DOI : 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F

H. Ashkenazy, E. Erez, and E. Martz, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Research, vol.38, issue.Web Server, pp.529-533, 2010.
DOI : 10.1093/nar/gkq399

D. Falco, L. Bruno, M. Andolfo, and I. , gene, British Journal of Haematology, vol.4, issue.4, pp.492-495, 2012.
DOI : 10.1182/blood-2004-07-2966

E. Bardou-jacquet, M. Island, and A. Jouanolle, A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload, Blood Cells, Molecules, and Diseases, vol.47, issue.4, pp.243-248, 2011.
DOI : 10.1016/j.bcmd.2011.07.004

URL : https://hal.archives-ouvertes.fr/hal-00739367

E. Blanco, C. Kannengiesser, and B. Grandchamp, Not all DMT1 mutations lead to iron overload, Blood Cells, Molecules, and Diseases, vol.43, issue.2, pp.199-201, 2009.
DOI : 10.1016/j.bcmd.2009.05.003

A. Iolascon and F. De, Mutations in the Gene Encoding DMT1: Clinical Presentation and Treatment, Seminars in Hematology, vol.46, issue.4, pp.358-370, 2009.
DOI : 10.1053/j.seminhematol.2009.06.005

A. Iolascon, M. Apolito, and V. Servedio, Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2), Blood, vol.107, issue.1, pp.349-354, 2006.
DOI : 10.1182/blood-2005-06-2477

A. Iolascon, C. Camaschella, and D. Pospisilova, Natural History of Recessive Inheritance of DMT1 Mutations, The Journal of Pediatrics, vol.152, issue.1, pp.136-139, 2008.
DOI : 10.1016/j.jpeds.2007.08.041

M. Mims, Y. Guan, and D. Pospisilova, Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload, Blood, vol.105, issue.3, pp.1337-1342, 2005.
DOI : 10.1182/blood-2004-07-2966

K. Simmons, S. Jackson, and F. Brueckner, Molecular mechanism of ligand recognition by membrane transport protein, Mhp1, The EMBO Journal, vol.33, issue.16, pp.1831-1844, 2014.
DOI : 10.15252/embj.201387557

V. Alva, J. Soding, and A. Lupas, Author response, eLife, vol.43, 2015.
DOI : 10.7554/eLife.09410.014

S. Das, N. Dawson, and C. Orengo, Diversity in protein domain superfamilies, Current Opinion in Genetics & Development, vol.35, pp.40-49, 2015.
DOI : 10.1016/j.gde.2015.09.005

URL : http://doi.org/10.1016/j.gde.2015.09.005

A. Vergara-jaque, C. Fenollar-ferrer, and D. Kaufmann, Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms, Frontiers in Pharmacology, vol.33, p.183, 2015.
DOI : 10.1093/nar/gki524

K. Siddle and L. Quintana-murci, The Red Queen's long race: human adaptation to pathogen pressure, Current Opinion in Genetics & Development, vol.29, pp.31-38, 2014.
DOI : 10.1016/j.gde.2014.07.004

T. Nakashige, B. Zhang, and C. Krebs, Human calprotectin is an iron-sequestering host-defense protein, Nature Chemical Biology, vol.145, issue.10, pp.765-771, 2015.
DOI : 10.1016/0003-2697(71)90405-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575267

K. Becker and E. Skaar, Metal limitation and toxicity at the interface between host and pathogen, FEMS Microbiology Reviews, vol.38, issue.6, pp.1235-1249, 2014.
DOI : 10.1111/1574-6976.12087

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227937

J. Lisher and D. Giedroc, Manganese acquisition and homeostasis at the host-pathogen interface, Frontiers in Cellular and Infection Microbiology, vol.3, p.91, 2013.
DOI : 10.3389/fcimb.2013.00091

URL : http://doi.org/10.3389/fcimb.2013.00091

T. Ganz, Iron in innate immunity: starve the invaders, Current Opinion in Immunology, vol.21, issue.1, pp.63-67, 2009.
DOI : 10.1016/j.coi.2009.01.011

T. Ganz and E. Nemeth, Iron homeostasis in host defence and inflammation, Nature Reviews Immunology, vol.56, issue.8, pp.500-510, 2015.
DOI : 10.1128/AAC.01197-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801113

S. Buracco, B. Peracino, and R. Cinquetti, Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux, Journal of Cell Science, vol.128, issue.17, pp.3304-3316, 2015.
DOI : 10.1242/jcs.173153

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582194

C. Gallant, S. Malik, and N. Jabado, Reduced in vitro functional activity of human NRAMP1 (SLC11A1) allele that predisposes to increased risk of pediatric tuberculosis disease, Genes and Immunity, vol.100, issue.8, pp.691-698, 2007.
DOI : 10.1038/sj.gene.6364435

A. Desiro, A. Salvioli, and E. Ngonkeu, Detection of a novel intracellular microbiome, pp.286-318, 2014.

S. Ohshima, Y. Sato, and R. Fujimura, Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata, International Journal of Systematic and Evolutionary Microbiology, vol.66, issue.5, 2016.
DOI : 10.1099/ijsem.0.000990

A. Cohen, Y. Nevo, and N. Nelson, The first external loop of the metal ion transporter DCT1 is involved in metal ion binding and specificity, Proceedings of the National Academy of Sciences, vol.43, issue.4-5, pp.10694-10699, 2003.
DOI : 10.1016/S0197-0186(03)00032-9

P. Courville, R. Chaloupka, and M. Cellier, Recent progress in structure???function analyses of Nramp proton-dependent metal-ion transportersThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB ??? Membrane Proteins in Health and Disease., Biochemistry and Cell Biology, vol.84, issue.6, pp.960-978, 2006.
DOI : 10.1139/o06-193

X. Chen, J. Peng, and A. Cohen, -coupled Iron Uptake with Concomitant Uncoupled Cation Currents, Journal of Biological Chemistry, vol.74, issue.49, pp.35089-35094, 1999.
DOI : 10.1016/S0006-3495(96)79506-1

URL : https://hal.archives-ouvertes.fr/hal-01400043

D. Agranoff, L. Collins, and D. Kehres, is a pH-dependent transporter of manganese, iron, cobalt and nickel, Biochemical Journal, vol.385, issue.1, pp.225-232, 2005.
DOI : 10.1042/BJ20040836

H. Gunshin, B. Mackenzie, and U. Berger, Cloning and characterization of a mammalian proton-coupled metal-ion transporter, Nature, vol.388, issue.6641, pp.482-488, 1997.
DOI : 10.1038/41343

A. Sacher, A. Cohen, and N. Nelson, Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes, J Exp Biol, vol.204, pp.1053-1061, 2001.

M. Bleackley and R. Macgillivray, Transition metal homeostasis: from yeast to human disease, BioMetals, vol.273, issue.44, pp.785-809, 2011.
DOI : 10.1074/jbc.273.44.28713

J. Martin, L. Waters, and G. Storz, The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese, PLOS Genetics, vol.255, issue.3, p.1004977, 2015.
DOI : 10.1371/journal.pgen.1004977.s018

M. Tsai, Y. Fang, and C. Miller, Sided Functions of an Arginine???Agmatine Antiporter Oriented in Liposomes, Biochemistry, vol.51, issue.8, pp.1577-1585, 2012.
DOI : 10.1021/bi201897t

Y. Nevo and N. Nelson, The NRAMP family of metal-ion transporters, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.7, pp.609-620, 2006.
DOI : 10.1016/j.bbamcr.2006.05.007

W. Lan, H. Ren, and Y. Pang, coupled membrane transport using fluorescence probes, Anal. Methods, vol.275, issue.1, pp.44-46, 2012.
DOI : 10.1074/jbc.275.2.1023

H. Makui, E. Roig, and S. Cole, Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter, Molecular Microbiology, vol.67, issue.5, pp.1065-1078, 2000.
DOI : 10.1083/jcb.130.4.821

D. Kehres, M. Zaharik, and B. Finlay, The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen, Molecular Microbiology, vol.67, issue.5, pp.1085-1100, 2000.
DOI : 10.1016/S1367-5931(99)80031-3

R. Perry, I. Mier, and J. Fetherston, Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth, BioMetals, vol.37, issue.3-4, pp.699-703, 2007.
DOI : 10.1128/9781555816544.ch15

T. Hohle, O. Brian, and M. , and is regulated by manganese via the Fur protein, Molecular Microbiology, vol.67, issue.2, pp.399-409, 2009.
DOI : 10.1111/j.1365-2958.2009.06650.x

M. Fleming, C. Trenor, and M. Su, Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene, Nature Genetics, vol.4, issue.4, pp.383-386, 1997.
DOI : 10.1006/geno.1996.0177

Y. Nevo and N. Nelson, The Mutation F227I Increases the Coupling of Metal Ion Transport in DCT1, Journal of Biological Chemistry, vol.11, issue.51, pp.53056-53061, 2004.
DOI : 10.3109/09687689409161024

A. Penmatsa and E. Gouaux, How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters, The Journal of Physiology, vol.449, issue.Suppl, pp.863-869, 2014.
DOI : 10.1038/nature06133

D. Ivankov, A. Finkelstein, and F. Kondrashov, A structural perspective of compensatory evolution, Current Opinion in Structural Biology, vol.26, pp.104-112, 2014.
DOI : 10.1016/j.sbi.2014.05.004