L. R. Heaney and M. V. Lomolino, Frontispiece: Diversity patterns of small mammals along elevational gradients, Global Ecology and Biogeography, vol.10, issue.1, p.1, 2001.
DOI : 10.1046/j.1466-822x.2001.00239.x

H. Jacquemyn, C. Micheneau, D. L. Roberts, and T. Pailler, Elevational gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island, Journal of Biogeography, vol.21, issue.10, pp.1751-1761, 2005.
DOI : 10.1046/j.1365-2699.2003.00902.x

I. D. Hodkinson, Terrestrial insects along elevation gradients: species and community responses to altitude, Biological Reviews, vol.102, issue.03, pp.489-513, 2005.
DOI : 10.1146/annurev.ecolsys.32.081501.114006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.463.1421

L. E. Powers, Distribution, Community Structure, and Microhabitats of Soil Invertebrates along an Elevational Gradient in Taylor Valley, Antarctica, Arctic and Alpine Research, vol.30, issue.2, pp.133-141, 1998.
DOI : 10.2307/1552128

J. A. Bryant, Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity, Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.11505-11511, 2008.
DOI : 10.3354/meps092205

Y. Miyamoto, T. Nakano, M. Hattori, and K. Nara, The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan, The ISME Journal, vol.6, issue.8, pp.1739-1746, 2014.
DOI : 10.1038/ismej.2011.155

T. Bongers and H. Ferris, Nematode community structure as a bioindicator in environmental monitoring, Trends in Ecology & Evolution, vol.14, issue.6, pp.224-228, 1999.
DOI : 10.1016/S0169-5347(98)01583-3

G. W. Yeates, How Plants Affect Nematodes, pp.61-113, 1987.
DOI : 10.1016/S0065-2504(08)60244-5

K. Ritz and D. L. Trudgill, Utility of nematode community analysis as an integrated measure of the functional state of soils: perspectives and challenges, Plant and Soil, vol.212, issue.1, pp.1-11, 1999.
DOI : 10.1023/A:1004673027625

A. Treonis, Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA), Diversity, vol.60, issue.4, pp.363-374, 2012.
DOI : 10.1073/pnas.89.12.5685

C. Rahbek, The role of spatial scale and the perception of large-scale species-richness patterns, Ecology Letters, vol.41, issue.2, pp.224-239, 2005.
DOI : 10.1007/BF02883148

C. Rahbek, The elevational gradient of species richness: a uniform pattern?, Ecography, vol.41, issue.2, pp.200-205, 1995.
DOI : 10.2307/1936921

D. Singh, K. Takahashi, J. Park, and J. M. Adams, Similarities and Contrasts in the Archaeal Community of Two Japanese Mountains: Mt. Norikura Compared to Mt. Fuji, Microbial Ecology, vol.72, issue.2, pp.428-441, 2015.
DOI : 10.1111/j.1574-6941.2010.00861.x

D. Singh, K. Takahashi, M. Kim, J. Chun, and J. M. Adams, A Hump-Backed Trend in Bacterial Diversity with Elevation on Mount Fuji, Japan, Microbial Ecology, vol.44, issue.2, pp.429-437, 2012.
DOI : 10.1021/es101500z

G. W. Yeates, T. Bongers, R. G. De-goede, D. W. Freckman, and S. S. Georgieva, Feeding habits in soil nematode families and generaan outline for soil ecologists, J Nematol, vol.25, pp.315-331, 1993.

I. Fujimura, Of the climate and weather of Mt Fuji in Report of the scientific survey of Mt, Fuji, vol.211345, 1971.

G. R. Stirling, Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture (Biological crop protection Pty Ltd, 2014.

J. H. Wolf, Diversity Patterns and Biomass of Epiphytic Bryophytes and Lichens Along an Altitudinal Gradient in the Northern Andes, Annals of the Missouri Botanical Garden, vol.80, issue.4, pp.928-960, 1993.
DOI : 10.2307/2399938

D. M. Olson, ABSTRACT, Journal of Tropical Ecology, vol.2, issue.02, pp.129-150, 1994.
DOI : 10.1086/284913

R. K. Colwell and D. C. Lees, The mid-domain effect: geometric constraints on the geography of species richness, Trends in Ecology & Evolution, vol.15, issue.2, pp.70-76, 2000.
DOI : 10.1016/S0169-5347(99)01767-X

C. M. Mccain, The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica, Journal of Biogeography, vol.234, issue.1, pp.19-31, 2004.
DOI : 10.5962/bhl.title.1261

M. V. Lomolino, Elevation gradients of species-density: historical and prospective views, Global Ecology and Biogeography, vol.41, issue.1, pp.3-13, 2001.
DOI : 10.5962/bhl.title.105661

R. K. Colwell, Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints, Ecology Letters, vol.23, issue.3, pp.1009-1022, 2016.
DOI : 10.1111/geb.12197

D. W. Freckman and R. A. Virginia, LOW-DIVERSITY ANTARCTIC SOIL NEMATODE COMMUNITIES: DISTRIBUTION AND RESPONSE TO DISTURBANCE, Ecology, vol.78, issue.2, pp.363-369, 1997.
DOI : 10.2307/3543403

B. D. Patterson, D. F. Stotz, S. Solari, J. W. Fitzpatrick, and V. Pacheco, Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru, Journal of Biogeography, vol.76, issue.3, pp.593-607, 1998.
DOI : 10.1146/annurev.ecolsys.25.1.443

E. D. Mccoy, The Distribution of Insects along Elevational Gradients, Oikos, vol.58, issue.3, pp.313-322, 1990.
DOI : 10.2307/3545222

D. Singh, Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea, Soil Biology and Biochemistry, vol.68, pp.140-149, 2014.
DOI : 10.1016/j.soilbio.2013.09.027

G. C. Stevens, The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics, The American Naturalist, vol.133, issue.2, pp.240-256, 1989.
DOI : 10.1086/284913

G. C. Stevens, The Elevational Gradient in Altitudinal Range: An Extension of Rapoport's Latitudinal Rule to Altitude, The American Naturalist, vol.140, issue.6, pp.893-911, 1992.
DOI : 10.1086/285447

G. Brehm, R. K. Colwell, and J. Kluge, The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient, Global Ecology and Biogeography, vol.26, issue.2, pp.205-219, 2007.
DOI : 10.1086/491685

J. Wang, Contrasting patterns in elevational diversity between microorganisms and macroorganisms, Journal of Biogeography, vol.62, issue.3, pp.595-603, 2011.
DOI : 10.1111/j.1574-6941.2009.00775.x

S. U. Sarathchandra, A. Ghani, G. W. Yeates, G. Burch, and N. R. Cox, Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils, Soil Biology and Biochemistry, vol.33, issue.7-8, pp.953-964, 2001.
DOI : 10.1016/S0038-0717(00)00245-5

W. M. Post, J. Pastor, P. J. Zinke, and A. G. Stangenberger, Global patterns of soil nitrogen storage, Nature, vol.6, issue.6038, pp.613-616, 1985.
DOI : 10.1038/scientificamerican0970-136

Y. Miyajima and K. Takahashi, Changes with altitude of the stand structure of temperate forests on Mount Norikura, central Japan, Journal of Forest Research, vol.15, issue.3, pp.187-192, 2007.
DOI : 10.2307/1550779

G. Xu, Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China, Journal of Environmental Sciences, vol.19, issue.5, pp.603-609, 2007.
DOI : 10.1016/S1001-0742(07)60100-4

G. Bakonyi, Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland, Applied Soil Ecology, vol.37, issue.1-2, pp.31-40, 2007.
DOI : 10.1016/j.apsoil.2007.03.008

K. Takahashi, H. Azuma, and K. Yasue, Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan, Ecological Research, vol.10, issue.5, pp.549-558, 2003.
DOI : 10.1139/cjfr-27-12-1962

X. Li, Effects of organic and other management practices on soil nematode communities in tea plantation: a case study in southern China, Journal of Plant Nutrition and Soil Science, vol.25, issue.4, pp.604-612, 2014.
DOI : 10.1007/BF02908887

M. Song, Responses of soil nematodes to water and nitrogen additions in an old-field grassland, Applied Soil Ecology, vol.102, pp.53-60, 2016.
DOI : 10.1016/j.apsoil.2016.02.011

J. Zhao, Soil nematode assemblages in an acid soil as affected by lime application, Nematology, vol.17, issue.2, pp.179-191, 2015.
DOI : 10.1163/15685411-00002860

G. W. Yeates, Nematodes as soil indicators: functional and biodiversity aspects, Biol. Fert. Soils, vol.37, issue.4, pp.199-210, 2003.

J. Van-bezooijen, Methods and techniques for nematology, pp.20-22, 2006.

D. L. Porazinska, Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity, Molecular Ecology Resources, vol.43, issue.6, pp.1439-1450, 2009.
DOI : 10.1111/j.1755-0998.2009.02611.x

P. D. Schloss, Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Applied and Environmental Microbiology, vol.75, issue.23, pp.7537-7541, 2009.
DOI : 10.1128/AEM.01541-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786419

S. P. Brown, Scraping the bottom of the barrel: are rare high throughput sequences artifacts?, Fungal Ecology, vol.13, pp.221-225, 2015.
DOI : 10.1016/j.funeco.2014.08.006

C. Quast, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Research, vol.41, issue.D1, pp.590-596, 2013.
DOI : 10.1093/nar/gks1219

URL : http://doi.org/10.1093/nar/gks1219

M. A. Rodríguez-gironés and L. Santamaría, A new algorithm to calculate the nestedness temperature of presence-absence matrices, Journal of Biogeography, vol.90, issue.5, pp.924-935, 2006.
DOI : 10.1007/s004420050348

K. Dong, Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum, Scientific Reports, vol.67, issue.1, p.26360, 2016.
DOI : 10.2307/1938672

URL : https://hal.archives-ouvertes.fr/pasteur-01351106