A. Burberry, M. Zeng, L. Ding, I. Wicks, N. Inohara et al., Infection Mobilizes Hematopoietic Stem Cells through Cooperative NOD-like Receptor and Toll-like Receptor Signaling, Cell Host & Microbe, vol.15, issue.6, pp.779-91, 2014.
DOI : 10.1016/j.chom.2014.05.004

URL : https://doi.org/10.1016/j.chom.2014.05.004

S. Boettcher, R. Gerosa, R. Radpour, J. Bauer, F. Ampenberger et al., Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis, Blood, vol.124, issue.9, pp.1393-403, 2014.
DOI : 10.1182/blood-2014-04-570762

URL : http://www.bloodjournal.org/content/bloodjournal/124/9/1393.full.pdf

M. Manz and S. Boettcher, Emergency granulopoiesis, Nature Reviews Immunology, vol.367, issue.5, pp.302-316, 2014.
DOI : 10.1056/NEJMoa1200710

M. Baldridge, K. King, N. Boles, D. Weksberg, and M. Goodell, Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection, Nature. Epub, vol.46511, issue.729906, pp.793-800, 2010.

T. Griseri, B. Mckenzie, C. Schiering, and F. Powrie, Dysregulated Hematopoietic Stem and Progenitor Cell Activity Promotes Interleukin-23-Driven Chronic Intestinal Inflammation, Immunity, vol.37, issue.6, pp.1116-1145, 2012.
DOI : 10.1016/j.immuni.2012.08.025

URL : https://doi.org/10.1016/j.immuni.2012.08.025

S. Haas, J. Hansson, D. Klimmeck, D. Loeffler, L. Velten et al., Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors, Cell Stem Cell, vol.17, issue.4, pp.422-456, 2015.
DOI : 10.1016/j.stem.2015.07.007

URL : https://doi.org/10.1016/j.stem.2015.07.007

K. Matatall, C. Shen, G. Challen, and K. King, Type II Interferon Promotes Differentiation of Myeloid-Biased Hematopoietic Stem Cells, STEM CELLS, vol.17, issue.2, pp.3023-3053, 2014.
DOI : 10.1158/1078-0432.CCR-11-0482

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.1799/pdf

R. Matnani and K. Ganapathi, Hemophagocytic lymphohistiocytosis associated with visceral leishmaniasis, Blood, vol.127, issue.4, pp.513-27218126, 2016.
DOI : 10.1182/blood-2015-10-678862

E. De-freitas, F. Leoratti, C. Freire-de-lima, A. Morrot, and D. Feijo, The Contribution of Immune Evasive Mechanisms to Parasite Persistence in Visceral Leishmaniasis, Frontiers in Immunology, vol.7, issue.1, 2016.
DOI : 10.1186/s13073-015-0236-1

P. Kaye and P. Scott, Leishmaniasis: complexity at the host???pathogen interface, Nature Reviews Microbiology, vol.74, issue.8, pp.604-619, 2011.
DOI : 10.1128/IAI.74.2.1305-1312.2006

S. Cotterell, C. Engwerda, and P. Kaye, Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected with Leishmania donovani, Infection and Immunity, vol.68, issue.4, pp.1840-1848, 2000.
DOI : 10.1128/IAI.68.4.1840-1848.2000

S. Cotterell, C. Engwerda, and P. Kaye, Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-alpha, Blood, vol.95, issue.5, pp.1642-51, 2000.

R. Sugimura, X. He, A. Venkatraman, F. Arai, A. Box et al., Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche, Cell, vol.150, issue.2, pp.351-65, 2012.
DOI : 10.1016/j.cell.2012.05.041

F. Staal, A. Chhatta, and H. Mikkers, Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis, Experimental Hematology, vol.44, issue.6, pp.451-458, 2016.
DOI : 10.1016/j.exphem.2016.03.004

B. Abidin, O. Kwarteng, E. Heinonen, and K. , Frizzled-6 Regulates Hematopoietic Stem/Progenitor Cell Survival and Self-Renewal, The Journal of Immunology, vol.195, issue.5, pp.2168-76, 2015.
DOI : 10.4049/jimmunol.1403213

URL : https://hal.archives-ouvertes.fr/pasteur-01351877

X. Zhou, S. Yu, D. Zhao, J. Harty, V. Badovinac et al., Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1, Immunity, vol.33, issue.2, pp.229-269, 2010.
DOI : 10.1016/j.immuni.2010.08.002

L. Gattinoni, X. Zhong, D. Palmer, Y. Ji, C. Hinrichs et al., Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells, Nature Medicine, vol.17, issue.7, pp.808-821, 1982.
DOI : 10.4049/jimmunol.176.3.1439

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707501/pdf

W. Chae, A. Ehrlich, P. Chan, A. Teixeira, O. Henegariu et al., The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation, Immunity, vol.44, issue.2, pp.246-58, 2016.
DOI : 10.1016/j.immuni.2016.01.008

URL : https://doi.org/10.1016/j.immuni.2016.01.008

A. Wilson, E. Laurenti, G. Oser, R. Van-der-wath, W. Blanco-bose et al., Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell. Epub, vol.13512, issue.6, pp.1118-1147, 2008.
DOI : 10.1016/j.cell.2009.06.020

URL : https://doi.org/10.1016/j.cell.2009.06.020

E. Pietras, C. Mirantes-barbeito, S. Fong, D. Loeffler, L. Kovtonyuk et al., Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal, Nature Cell Biology, vol.512, issue.6, pp.607-625, 2016.
DOI : 10.1038/nature13619

M. Kiel, O. Yilmaz, T. Iwashita, C. Terhorst, and S. Morrison, SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells, Cell, vol.121, issue.7, pp.1109-1130, 2005.
DOI : 10.1016/j.cell.2005.05.026

URL : https://doi.org/10.1016/j.cell.2005.05.026

A. Mirkovich, A. Galelli, A. Allison, and F. Modabber, Increased myelopoiesis during Leishmania major infection in mice: generation of 'safe targets', a possible way to evade the effector immune mechanism, Clin Exp Immunol. PMID, vol.64, issue.1, pp.1-7, 1986.

S. Passos, L. Carvalho, R. Costa, T. Campos, F. Novais et al., Intermediate monocytes contribute to pathologic immune response in Leishmania braziliensis infections. The Journal of infectious diseases, pp.274-82, 2015.
DOI : 10.1093/infdis/jiu439

URL : https://academic.oup.com/jid/article-pdf/211/2/274/9637672/jiu439.pdf

M. Buechler, T. Teal, K. Elkon, and J. Hamerman, Cutting Edge: Type I IFN Drives Emergency Myelopoiesis and Peripheral Myeloid Expansion during Chronic TLR7 Signaling, The Journal of Immunology, vol.190, issue.3, pp.886-91, 2013.
DOI : 10.4049/jimmunol.1202739

URL : http://www.jimmunol.org/content/jimmunol/190/3/886.full.pdf

M. Askenase, S. Han, A. Byrd, M. Da-fonseca, D. Bouladoux et al., Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection, Immunity, vol.42, issue.6, pp.1130-1172, 2015.
DOI : 10.1016/j.immuni.2015.05.011

URL : https://doi.org/10.1016/j.immuni.2015.05.011

A. Mackinnon, S. Farnworth, P. Hodkinson, N. Henderson, K. Atkinson et al., Regulation of Alternative Macrophage Activation by Galectin-3, The Journal of Immunology, vol.180, issue.4, pp.2650-2658, 2008.
DOI : 10.4049/jimmunol.180.4.2650

A. Chung, P. Sieling, M. Schenk, R. Teles, S. Krutzik et al., Galectin-3 Regulates the Innate Immune Response of Human Monocytes, The Journal of Infectious Diseases, vol.207, issue.6, pp.947-56, 2013.
DOI : 10.1093/infdis/jis920

R. Phillips, M. Lutz, and B. Premack, Differential signaling mechanisms regulate expression of CC chemokine receptor-2 during monocyte maturation, Journal of Inflammation, vol.2, issue.1, p.14, 2005.
DOI : 10.1186/1476-9255-2-14

Y. Morias, C. Abels, D. Laoui, E. Van-overmeire, M. Guilliams et al., Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages, PLOS Pathogens, vol.19, issue.8, 2015.
DOI : 10.1371/journal.ppat.1004873.s001

Y. Zhou, Y. Yang, G. Warr, and R. Bravo, LPS down-regulates the expression of chemokine receptor CCR2 in mice and abolishes macrophage infiltration in acute inflammation, Journal of leukocyte biology, vol.65, issue.2, pp.265-274, 1999.

S. Chong, M. Evrard, S. Devi, J. Chen, J. Lim et al., CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. The Journal of experimental medicine, pp.2293-314, 2016.
DOI : 10.1084/jem.20160800

URL : http://jem.rupress.org/content/jem/213/11/2293.full.pdf

C. Oderup, M. Lajevic, and E. Butcher, Canonical and Noncanonical Wnt Proteins Program Dendritic Cell Responses for Tolerance, The Journal of Immunology, vol.190, issue.12, pp.6126-6160, 2013.
DOI : 10.4049/jimmunol.1203002

URL : http://www.jimmunol.org/content/jimmunol/190/12/6126.full.pdf

M. Martin, K. Rehani, R. Jope, and S. Michalek, Toll-like receptor???mediated cytokine production is differentially regulated by glycogen synthase kinase 3, Nature Immunology, vol.165, issue.8, pp.777-84, 2005.
DOI : 10.4049/jimmunol.165.10.5780

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933525/pdf

R. Bankoti, K. Gupta, A. Levchenko, and S. Stager, Marginal Zone B Cells Regulate Antigen-Specific T Cell Responses during Infection, The Journal of Immunology, vol.188, issue.8, pp.3961-71, 2012.
DOI : 10.4049/jimmunol.1102880

URL : https://hal.archives-ouvertes.fr/pasteur-00819065

Y. Belkaid, C. Piccirillo, S. Mendez, E. Shevach, and D. Sacks, CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity, Nature, vol.223, issue.6915, pp.502-509, 2002.
DOI : 10.1016/S0022-1759(98)00204-X

N. Glennie, V. Yeramilli, D. Beiting, S. Volk, C. Weaver et al., Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. The Journal of experimental medicine, pp.1405-1419, 2015.
DOI : 10.1084/jem.20142101

URL : http://jem.rupress.org/content/jem/212/9/1405.full.pdf

A. Duque, G. Descoteaux, and A. , Leishmania survival in the macrophage: where the ends justify the means, Current Opinion in Microbiology, vol.26, pp.32-40, 2015.
DOI : 10.1016/j.mib.2015.04.007

URL : https://hal.archives-ouvertes.fr/pasteur-01351880

T. Joshi, S. Rodriguez, V. Perovic, I. Cockburn, and S. Stager, B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections):e1000431. https, PLoS pathogens, vol.5, issue.5, 2009.
DOI : 10.1371/journal.ppat.1000431

URL : https://doi.org/10.1371/journal.ppat.1000431

A. De-bruin, O. Demirel, B. Hooibrink, C. Brandts, and M. Nolte, Interferon-?? impairs proliferation of hematopoietic stem cells in mice, Blood, vol.121, issue.18, pp.3578-85, 2013.
DOI : 10.1182/blood-2012-05-432906

J. Cervia, H. Rosen, and H. Murray, Effector role of blood monocytes in experimental visceral leishmaniasis, Infection and immunity. PMID, vol.61, issue.4, pp.1330-1333, 1993.

H. Murray, J. Cervia, J. Hariprashad, A. Taylor, M. Stoeckle et al., Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. The Journal of clinical investigation, pp.1183-92, 1995.

T. Sugiyama, H. Kohara, M. Noda, and T. Nagasawa, Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow Stromal Cell Niches, Immunity, vol.25, issue.6, pp.977-88, 2006.
DOI : 10.1016/j.immuni.2006.10.016

Y. Ueda, M. Kondo, and G. Kelsoe, Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow, The Journal of Experimental Medicine, vol.22, issue.11, pp.1771-80, 2005.
DOI : 10.1002/(SICI)1521-4141(199811)28:11<3738::AID-IMMU3738>3.0.CO;2-Q

H. Takizawa, R. Regoes, C. Boddupalli, S. Bonhoeffer, and M. Manz, Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation, The Journal of Experimental Medicine, vol.156, issue.2, pp.273-84, 2011.
DOI : 10.1016/j.stem.2007.10.020

T. Baba, K. Naka, S. Morishita, N. Komatsu, A. Hirao et al., MIP-1alpha/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. The Journal of experimental medicine, pp.2661-73, 2013.

K. Schepers, E. Pietras, D. Reynaud, J. Flach, M. Binnewies et al., Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche, Cell Stem Cell, vol.13, issue.3, pp.285-99, 2013.
DOI : 10.1016/j.stem.2013.06.009

Y. Li, Y. Zheng, T. Li, Q. Wang, J. Qian et al., Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma, Oncotarget, vol.6, issue.27, pp.24218-24247, 2015.
DOI : 10.18632/oncotarget.4523

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=4523&path%5B%5D=10377

S. Cheng, J. Quintin, R. Cramer, K. Shepardson, S. Saeed et al., mTOR- and HIF-1??-mediated aerobic glycolysis as metabolic basis for trained immunity, Science, vol.9, issue.9, p.1250684, 2014.
DOI : 10.1186/gb-2008-9-9-r137

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226238/pdf

M. Netea, J. Quintin, and J. Van-der-meer, Trained Immunity: A Memory for Innate Host Defense, Cell Host & Microbe, vol.9, issue.5, pp.355-61, 2011.
DOI : 10.1016/j.chom.2011.04.006

URL : https://doi.org/10.1016/j.chom.2011.04.006

S. Saeed, J. Quintin, H. Kerstens, N. Rao, A. Aghajanirefah et al., Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity, Science, vol.5, issue.12, p.1251086, 2014.
DOI : 10.1038/nri1733

A. Hammami, T. Charpentier, M. Smans, and S. Stager, IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF-1alpha and Impairing Dendritic Cell Functions during Leishmania Infection):e1004938. https, PLoS pathogens, vol.11, issue.6, 2015.
DOI : 10.1371/journal.ppat.1004938

URL : https://doi.org/10.1371/journal.ppat.1004938

K. Heinonen, N. Dube, A. Bourdeau, W. Lapp, and M. Tremblay, Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling, Proceedings of the National Academy of Sciences, vol.96, issue.5, pp.2776-81, 2006.
DOI : 10.1084/jem.175.2.405

URL : http://www.pnas.org/content/103/8/2776.full.pdf