W. J. Wiersinga, T. Van-der-poll, N. J. White, N. P. Day, and S. J. Peacock, Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei, Nature Reviews Microbiology, vol.71, issue.4, pp.272-282, 2006.
DOI : 10.1111/j.1348-0421.2001.tb02623.x

B. J. Currie, Melioidosis: Evolving Concepts in Epidemiology, Pathogenesis, and Treatment, Seminars in Respiratory and Critical Care Medicine, vol.36, issue.01, pp.111-125, 2015.
DOI : 10.1055/s-0034-1398389

D. Limmathurotsakul, Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis, Nature Microbiology, vol.385, issue.1, pp.1-5, 2016.
DOI : 10.1890/11-0826.1

I. Khan, Glanders in Animals: A Review on Epidemiology, Clinical Presentation, Diagnosis and Countermeasures, Transboundary and Emerging Diseases, vol.15, issue.3, pp.204-221, 2013.
DOI : 10.1177/030098587801500417

E. Wagar, SUMMARY, Clinical Microbiology Reviews, vol.29, issue.1, pp.175-189, 2016.
DOI : 10.1128/CMR.00033-15

W. J. Wiersinga and T. Van-der-poll, Immunity to Burkholderia pseudomallei, Current Opinion in Infectious Diseases, vol.22, issue.2, pp.102-108, 2009.
DOI : 10.1097/QCO.0b013e328322e727

M. Sarkar-tyson and R. W. Titball, Progress toward development of vaccines against melioidosis: A review, Clinical Therapeutics, vol.32, issue.8, pp.1437-1445, 2010.
DOI : 10.1016/j.clinthera.2010.07.020

D. M. Estes, S. W. Dow, H. P. Schweizer, and A. G. Torres, Present and future therapeutic strategies for melioidosis and glanders, Expert Review of Anti-infective Therapy, vol.52, issue.3, pp.325-338, 2010.
DOI : 10.1093/jac/dkg301

N. Patel, Development of Vaccines Against Burkholderia Pseudomallei, Frontiers in Microbiology, vol.2, p.198, 2011.
DOI : 10.3389/fmicb.2011.00198

S. J. Peacock, Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes, PLoS Neglected Tropical Diseases, vol.61, issue.1, p.1488, 2012.
DOI : 10.1371/journal.pntd.0001488.s002

L. C. Choh, Burkholderia vaccines: are we moving forward?, Frontiers in Cellular and Infection Microbiology, vol.3, p.5, 2013.
DOI : 10.3389/fcimb.2013.00005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564208/pdf

E. B. Silva and S. W. Dow, Development of Burkholderia mallei and pseudomallei vaccines, Frontiers in Cellular and Infection Microbiology, vol.3, p.10, 2013.
DOI : 10.3389/fcimb.2013.00010

W. T. Casey and S. Mcclean, Exploiting Molecular Virulence Determinants in Burkholderia to Develop Vaccine Antigens, Current Medicinal Chemistry, vol.22, issue.14, pp.1719-1733, 2015.
DOI : 10.2174/0929867322666150408111304

P. J. Brett, expresses a unique lipopolysaccharide mixture that is a potent activator of human Toll-like receptor 4 complexes, Molecular Microbiology, vol.73, issue.2, pp.379-390, 2007.
DOI : 10.1128/IAI.73.5.2940-2950.2005

T. E. West, R. K. Ernst, M. J. Jansson-hutson, and S. J. Skerrett, Activation of Toll-like receptors by Burkholderia pseudomallei, BMC Immunology, vol.9, issue.1, p.46, 2008.
DOI : 10.1186/1471-2172-9-46

URL : https://bmcimmunol.biomedcentral.com/track/pdf/10.1186/1471-2172-9-46?site=bmcimmunol.biomedcentral.com

D. Deshazer, P. Brett, and D. Woods, The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence, Molecular Microbiology, vol.66, issue.5, pp.1081-1100, 1998.
DOI : 10.1111/j.1348-0421.1993.tb01712.x

C. Wikraiphat, using lipopolysaccharide, capsule and flagellin mutants, FEMS Immunology & Medical Microbiology, vol.56, issue.3, pp.253-259, 2009.
DOI : 10.1111/j.1574-695X.2009.00574.x

URL : https://academic.oup.com/femspd/article-pdf/56/3/253/19171208/56-3-253.pdf

S. Arjcharoen, Fate of a Burkholderia pseudomallei Lipopolysaccharide Mutant in the Mouse Macrophage Cell Line RAW 264.7: Possible Role for the O-Antigenic Polysaccharide Moiety of Lipopolysaccharide in Internalization and Intracellular Survival, Infection and Immunity, vol.75, issue.9, pp.4298-4304, 2007.
DOI : 10.1128/IAI.00285-07

N. Chantratita, Survey of Innate Immune Responses to Burkholderia pseudomallei in Human Blood Identifies a Central Role for Lipopolysaccharide, PLoS ONE, vol.86, issue.11, p.81617, 2013.
DOI : 10.1371/journal.pone.0081617.t001

C. Charuchaimontri, Antilipopolysaccharide II: An Antibody Protective Against Fatal Melioidosis, Clinical Infectious Diseases, vol.29, issue.4, pp.813-818, 1999.
DOI : 10.1086/520441

URL : https://academic.oup.com/cid/article-pdf/29/4/813/1233923/29-4-813.pdf

L. E. Bryan, D. Wong, D. E. Woods, D. A. Dance, and W. Chaowagul, Passive protection if diabetic rats with antisera specific for the polysaccharide portion of the lipopolysaccharide isolated from Pseudomonas pseudomallei. Can, J. Infect. Dis, vol.5, pp.170-178, 1994.

M. Ho, Specificity and functional activity of anti-Burkholderia pseudomallei polysaccharide antibodies, Infect. Immun, vol.65, pp.3648-3653, 1997.

S. M. Jones, J. F. Ellis, P. Russell, K. F. Griffin, and P. C. Oyston, Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins, Journal of Medical Microbiology, vol.51, issue.12, pp.1055-1062, 2002.
DOI : 10.1099/0022-1317-51-12-1055

S. R. Treviño, Monoclonal Antibodies Passively Protect BALB/c Mice against Burkholderia mallei Aerosol Challenge, Infection and Immunity, vol.74, issue.3, pp.1958-1961, 2006.
DOI : 10.1128/IAI.74.3.1958-1961.2006

S. Zhang, In Vitro and In Vivo Studies of Monoclonal Antibodies with Prominent Bactericidal Activity against Burkholderia pseudomallei and Burkholderia mallei, Clinical and Vaccine Immunology, vol.18, issue.5, pp.825-834, 2011.
DOI : 10.1128/CVI.00533-10

D. P. Aucoin, Polysaccharide Specific Monoclonal Antibodies Provide Passive Protection against Intranasal Challenge with Burkholderia pseudomallei, PLoS ONE, vol.54, issue.4, p.35386, 2012.
DOI : 10.1371/journal.pone.0035386.t001

M. Nelson, Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis, Journal of Medical Microbiology, vol.53, issue.12, pp.1177-1182, 2004.
DOI : 10.1099/jmm.0.45766-0

S. A. Ngugi, Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis, Vaccine, vol.28, issue.47, pp.7551-7555, 2010.
DOI : 10.1016/j.vaccine.2010.08.058

P. J. Brett and D. E. Woods, Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates, Infect. Immun, vol.64, pp.2824-2828, 1996.

M. Burtnick, C. Heiss, A. Schuler, P. Azadi, and P. Brett, Development of novel O-polysaccharide based glycoconjugates for immunization against glanders, Frontiers in Cellular and Infection Microbiology, vol.2, p.148, 2012.
DOI : 10.3389/fcimb.2012.00148

A. E. Scott, Burkholderia pseudomallei Capsular Polysaccharide Conjugates Provide Protection against Acute Melioidosis, Infection and Immunity, vol.82, issue.8, pp.3206-3213, 2014.
DOI : 10.1128/IAI.01847-14

URL : http://iai.asm.org/content/82/8/3206.full.pdf

A. E. Scott, Protection against Experimental Melioidosis following Immunisation with a Lipopolysaccharide-Protein Conjugate, Journal of Immunology Research, vol.168, issue.5, p.392170, 2011.
DOI : 10.1093/infdis/168.5.1181

A. E. Gregory, A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.2, pp.447-456, 2015.
DOI : 10.1016/j.nano.2014.08.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330121/pdf

A. G. Torres, Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine, Vaccine, vol.33, issue.5, pp.686-692, 2015.
DOI : 10.1016/j.vaccine.2014.11.057

F. Garcia-quintanilla, J. A. Iwashkiw, N. L. Price, C. Stratilo, and M. F. Feldman, Production of a recombinant vaccine canddiate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery, Front. Microbiol, vol.5, p.381, 2014.

D. A. Moustafa, Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders, PLOS ONE, vol.27, issue.Pt 1, p.132032, 2015.
DOI : 10.1371/journal.pone.0132032.g006

V. Novem, Structural and Biological Diversity of Lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis, Clinical and Vaccine Immunology, vol.16, issue.10, pp.1420-1428, 2009.
DOI : 10.1128/CVI.00472-08

Y. A. Knirel, Structure of the polysaccharide chains of Pseudomonas pseudomallei lipopolysaccharides, Carbohydrate Research, vol.233, pp.185-193, 1992.
DOI : 10.1016/S0008-6215(00)90930-3

M. B. Perry, L. L. Maclean, T. Schollaardt, L. E. Bryan, and M. Ho, Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei, Infect. Immun, vol.63, pp.3348-3352, 1995.

M. N. Burtnick, P. J. Brett, and D. E. Woods, Molecular and Physical Characterization of Burkholderia mallei O Antigens, Journal of Bacteriology, vol.184, issue.3, pp.849-852, 2002.
DOI : 10.1128/JB.184.3.849-852.2002

C. Heiss, M. N. Burtnick, I. Black, P. Azadi, and P. J. Brett, Detailed structural analysis of the O-polysaccharide expressed by Burkholderia thailandensis E264, Carbohydrate Research, vol.363, pp.23-28, 2012.
DOI : 10.1016/j.carres.2012.09.027

C. Heiss, Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei, Carbohydrate Research, vol.381, pp.6-11, 2013.
DOI : 10.1016/j.carres.2013.08.013

C. Wikraiphat, Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification, Infection and Immunity, vol.83, issue.5, pp.2127-2138, 2015.
DOI : 10.1128/IAI.02785-14

P. J. Brett, Burkholderia thailandensis oacA Mutants Facilitate the Expression of Burkholderia mallei-Like O Polysaccharides, Infection and Immunity, vol.79, issue.2, pp.961-969, 2011.
DOI : 10.1128/IAI.01023-10

R. R. Schmidt and J. Michel, Facile Synthesis of??- and??-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides, Angewandte Chemie International Edition in English, vol.19, issue.9, pp.731-732, 1980.
DOI : 10.1002/anie.198007311

C. Gauthier, Non-stoichiometric O-acetylation of Shigella flexneri 2a O-specific polysaccharide: synthesis and antigenicity, Org. Biomol. Chem., vol.69, issue.24, pp.4218-4232, 2014.
DOI : 10.1021/jo049159a

URL : https://hal.archives-ouvertes.fr/hal-01172002

S. David and S. Hanessian, Regioselective manipulation of hydroxyl groups via organotin derivatives, Tetrahedron, vol.41, issue.4, pp.643-663, 1985.
DOI : 10.1016/S0040-4020(01)96443-9

P. Konradsson, U. E. Udodong, and B. Fraser-reid, Iodonium promoted reactions of disarmed thioglycosides, Tetrahedron Letters, vol.31, issue.30, pp.4313-4316, 1990.
DOI : 10.1016/S0040-4039(00)97609-3

S. Sato, M. Mori, Y. Ito, and T. Ogawa, An efficient approach to O-glycosides through CuBr2-Bu4NBr mediated activation of glycosides, Carbohydrate Research, vol.155, pp.6-10, 1986.
DOI : 10.1016/S0008-6215(00)90163-0

R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, Halide ion catalyzed glycosidation reactions. Syntheses of .alpha.-linked disaccharides, Journal of the American Chemical Society, vol.97, issue.14, pp.4056-4062, 1975.
DOI : 10.1021/ja00847a032

P. Fügedi and P. J. Garegg, A novel promoter for the efficient construction of 1,2-trans linkages in glycoside synthesis, using thioglycosides as glycosyl donors, Carbohydrate Research, vol.149, issue.1, pp.9-12, 1986.
DOI : 10.1016/S0008-6215(00)90385-9

C. Gouliaras, D. Lee, L. Chan, and M. S. Taylor, Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst, Journal of the American Chemical Society, vol.133, issue.35, pp.13926-13929, 2011.
DOI : 10.1021/ja2062715

J. K. Fairweather, L. Liu, T. Karoli, and V. Ferro, Synthesis of Disaccharides Containing 6-Deoxy-a-L-talose as Potential Heparan Sulfate Mimetics, Molecules, vol.7, issue.12, pp.9790-9802, 2012.
DOI : 10.1016/S0008-6215(98)00074-3

T. G. Frihed, C. M. Pedersen, and M. Bols, -hexopyranosyl Donors - Trends in Using Stereoselective Reductions or Mitsunobu Epimerizations, European Journal of Organic Chemistry, vol.51, issue.35, pp.7924-7939, 2014.
DOI : 10.1002/anie.201206880

A. F. Bochkov, Rigid conformation of tricyclic orthoesters of sugars, Carbohydrate Research, vol.16, issue.2, pp.497-499, 1971.
DOI : 10.1016/S0008-6215(00)81193-3

Y. Ma, G. Lian, Y. Li, and B. Yu, Identification of 3,6-di-O-acetyl-1,2,4-O-orthoacetyl-??-d-glucopyranose as a direct evidence for the 4-O-acyl group participation in glycosylation, Chemical Communications, vol.29, issue.26, pp.7515-7517, 2011.
DOI : 10.1021/ma960488h

T. Bamhaoud, S. Sanchez, and J. Prandi, 1,2,5-ortho esters of d-arabinose as versatile arabinofuranosidic building blocks. Concise synthesis of the tetrasaccharidic cap of the lipoarabinomannan of Mycobacterium tuberculosis, Chemical Communications, issue.8, pp.659-660, 2000.
DOI : 10.1039/b000873g

S. Sanchez, T. Bamhaoud, and J. Prandi, Elaboration of Monoarabinofuranosidic Building Blocks, European Journal of Organic Chemistry, vol.2002, issue.22, pp.3864-3873, 2002.
DOI : 10.1002/1099-0690(200211)2002:22<3864::AID-EJOC3864>3.0.CO;2-8

X. Cai, Efficient synthesis of a 6-deoxytalose tetrasaccharide related to the antigenic O-polysaccharide produced by Aggregatibacter actinomycetemcomitans serotype c, Carbohydrate Research, vol.345, issue.9, pp.1230-1234, 2010.
DOI : 10.1016/j.carres.2010.04.009

D. E. Nuti, Identification of Circulating Bacterial Antigens by In Vivo Microbial Antigen Discovery, mBio, vol.2, issue.4, pp.136-00111, 2011.
DOI : 10.1128/mBio.00136-11

B. Brogioni and F. Berti, Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review, MedChemComm, vol.64, issue.8, pp.1058-1066, 2014.
DOI : 10.1139/o86-004

R. Marchetti, ???Rules of Engagement??? of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling, ChemistryOpen, vol.29, issue.4, pp.274-296, 2016.
DOI : 10.1007/s10822-014-9792-5

R. Marchetti, Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis, ACS Chemical Biology, vol.10, issue.10, pp.2295-2302, 2015.
DOI : 10.1021/acschembio.5b00502

URL : https://hal.archives-ouvertes.fr/hal-01359499

P. Groves, Temperature dependence of ligand???protein complex formation as reflected by saturation transfer difference NMR experiments, Magnetic Resonance in Chemistry, vol.21, issue.9, pp.745-748, 2007.
DOI : 10.1002/mrc.2041

F. Broecker, Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans, Nature Communications, vol.267, p.11224, 2016.
DOI : 10.1002/jcc.20290

T. R. Kozel, mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia, Proc. Natl Acad. Sci. USA 101, pp.5042-5047, 2004.
DOI : 10.1038/nbt0202-114

V. Suttisunhakul, Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei, Journal of Clinical Microbiology, vol.54, issue.5, pp.1259-1268, 2016.
DOI : 10.1128/JCM.02856-15