Hybrid PET/MRI co-segmentation based on joint fuzzy connectedness and graph cut

Abstract : Tumor segmentation from hybrid PET/MRI scans may be highly beneficial in radiotherapy treatment planning. Indeed, it gives for both modalities the suitable information that could make the delineation of tumors more accurate than using each one apart. We aim in this work to propose a co-segmentation method that deals with several challenges, notably the lack of one-to-one correspondence between tumors of the two modalities and the boundaries' smoothing.
Type de document :
Article dans une revue
Computer Methods and Programs in Biomedicine, Elsevier, 2017, 149, pp.29 - 41. 〈10.1016/j.cmpb.2017.07.006〉
Liste complète des métadonnées

https://hal-riip.archives-ouvertes.fr/pasteur-01593403
Contributeur : Abdelhakim Ben Hassine <>
Soumis le : mardi 26 septembre 2017 - 11:15:20
Dernière modification le : lundi 5 février 2018 - 15:22:12

Identifiants

Collections

Citation

Arafet Sbei, Khaoula Elbedoui, Walid Barhoumi, Philippe Maksud, Chokri Maktouf. Hybrid PET/MRI co-segmentation based on joint fuzzy connectedness and graph cut. Computer Methods and Programs in Biomedicine, Elsevier, 2017, 149, pp.29 - 41. 〈10.1016/j.cmpb.2017.07.006〉. 〈pasteur-01593403〉

Partager

Métriques

Consultations de la notice

24