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Abstract

Background

Yersinia pestis appears to be maintained in multiple, geographically separate, and phyloge-

netically distinct subpopulations within the highlands of Madagascar. However, the dynam-

ics of these locally differentiated subpopulations through time are mostly unknown. To

address that gap and further inform our understanding of plague epidemiology, we investi-

gated the phylogeography of Y. pestis in Madagascar over an 18 year period.

Methodology/Principal findings

We generated whole genome sequences for 31 strains and discovered new SNPs that we

used in conjunction with previously identified SNPs and variable-number tandem repeats

(VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the

locations where samples were obtained on a fine geographic scale to examine phylogeo-

graphic patterns through time. We identified 18 geographically separate and phylogeneti-

cally distinct subpopulations that display spatial and temporal stability, persisting in the

same locations over a period of almost two decades. We found that geographic areas with

higher levels of topographical relief are associated with greater levels of phylogenetic diver-

sity and that sampling frequency can vary considerably among subpopulations and from

year to year. We also found evidence of various Y. pestis dispersal events, including over

long distances, but no evidence that any dispersal events resulted in successful establish-

ment of a transferred genotype in a new location during the examined time period.

Conclusions/Significance

Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local

areas are responsible for the long term maintenance of plague in Madagascar, rather than
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repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintain-

ing Y. pestis subpopulations in Madagascar, with increased topographical relief associated

with increased levels of localized differentiation. Local ecological factors likely affect the

dynamics of individual subpopulations and the associated likelihood of observing human

plague cases in a given year in a particular location.

Author summary

Plague exists in several geographically separate phylogenetic groups within Madagascar,

but little is known about the dynamics of these groups through time. We subtyped 773

Malagasy plague samples and identified 18 phylogenetic groups that showed persistence

in the same locations over a period of almost two decades. Locations with more topo-

graphical relief contained more phylogenetic groups than flatter areas and different

phylogenetic groups varied considerably in the number of samples collected each year.

Transfers of plague from one location to another definitely occur, but appear to seldom

result in the transplanted phylogenetic group becoming successfully established in a new

location. Persistent, local transmission cycles are likely responsible for the long term

maintenance of plague in Madagascar, rather than repeated wide scale disease transmis-

sion events. Landscape likely plays a role in maintaining different phylogenetic groups,

with increased topographical relief associated with increased numbers of phylogenetic

groups. Local ecological factors likely affect the dynamics of individual subpopulations

and the associated likelihood of observing human plague cases in a given year in a particu-

lar location.

Introduction

Yersinia pestis is one of the most successful bacterial pathogens known. Its most recent com-

mon ancestor (MRCA) may have emerged less than 6,000 years ago yet it appears to have been

widely dispersed throughout Eurasia during the Bronze Age. Following the acquisition of

some key genetic changes only ~3000 years ago, some Y. pestis became capable of causing the

deadly, flea-borne bubonic plague [1] and then swept the known world in three recognized

pandemics [2]. These pandemics likely originated from Asia in multiple successive waves [3,

4], causing hundreds of millions of human deaths and establishing a number of global enzootic

foci [2]. Indeed, Y. pestis has successfully spread to every continent except Antarctica and cur-

rently has established enzootic foci in Asia, Africa, and the Americas [2, 5]. Y. pestis is thought

to persist in these enzootic foci through low-level cycling in numerous, often cryptic, rodent

species whose populations either include a mixture of relatively resistant and highly susceptible

individuals or are characterized by a high replacement rate. Periodically, Y. pestis emerges

from these enzootic reservoirs in large-scale epizootics involving massive die-offs of highly sus-

ceptible rodent species that serve to amplify and spread Y. pestis [2, 6, 7].

Alternating enzootic and epizootic cycles, human involvement, and ecology have all con-

tributed to the observed phylogeography of Y. pestis and its consistent pattern of the spread of

one to a few genotypes followed by localized differentiation. Globally, this pattern is most

clearly observed with the highly successful 1.ORI population, which was responsible for the

third pandemic. In the global Y. pestis phylogeny, the basal node of this population is charac-

terized by a large polytomy, suggesting that a rapid expansion preceded the spread of this

Y. pestis temporal phylogeography
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group around the world [3]. Numerous independent lineages branch off from this initial polyt-

omy, reflecting the independent evolution of Y. pestis in the many new enzootic foci that were

established after this event [3, 4]. Importantly, the global spread of this group would not have

been possible without the inadvertent human transport, via steamship and other means, of rats

and fleas infected with Y. pestis [2, 5]. In addition, the local ecology of regions where Y. pestis
was introduced strongly influenced the establishment of stable enzootic foci. During the third

pandemic, new plague foci became established in locations that contained either suitable

native rodent species (e.g., North America) or a large enough population of non-native rodents

(e.g., Madagascar) that could sustain the rodent/flea transmission cycle. In contrast, locations

without these conditions (e.g., Australia), did not develop enzootic foci, although they did

experience outbreaks, which subsided after the number of non-native rodents was reduced,

resulting in an evolutionary dead end for Y. pestis in these locations [5].

The influence of enzootic/epizootic cycling, human involvement, and ecology on Y. pestis
phylogeography is also apparent on a regional level, such as in the well-studied plague foci

of Madagascar. Two large areas in the central and northern highlands serve as traditional

plague foci in Madagascar [8, 9], with the persistence of Y. pestis in these areas linked to the

presence of two flea vectors, Xenopsylla cheopis and Synopsyllus fonquerniei, which are less

abundant and absent, respectively, at lower elevations [8, 10, 11]. A third focus in the port

city of Mahajanga experienced several outbreaks when Y. pestis was first introduced to Mad-

agascar [8, 12] and then again in the 1990s [8, 13–16]. However, this focus does not appear

to be stable, as evidenced by the 62 year gap in observed plague activity between the initial

and 1990s outbreaks [8, 13–16] and the apparent lack of current activity, based on the

absence of additional confirmed human cases [8]. Within the traditional foci, Y. pestis
appears to be maintained in multiple, geographically separate, and phylogenetically distinct

subpopulations that are likely sustained by the black rat (Rattus rattus) [17–19], the primary

plague host in rural Madagascar [8–12]. There is also evidence of multiple, likely human-

mediated, long-distance dispersal events of different genotypes to new locations, with at

least one such event responsible for the re-emergence of the Mahajanga focus during the

1990s [18, 19].

The spread of one to a few genotypes followed by localized differentiation is a well-estab-

lished phylogeographic pattern of Y. pestis, at multiple geographic scales [3, 4, 18–20]. In Mad-

agascar, there are multiple, geographically and phylogenetically distinct subpopulations that

have arisen due to this localized differentiation [17–19]. However, the dynamics of these

locally differentiated subpopulations through time are mostly unknown. Previous studies have

suggested that some subpopulations experience extinction and/or decreases in frequency and

that new subpopulations emerge and spread, potentially becoming established in new loca-

tions, either temporarily or more long-term [17–19]. In addition, a temporal study of the

1990s Mahajanga outbreaks depicted a striking cycling pattern of diversity generation and loss

that occurred during and after each outbreak, consistent with severe inter-seasonal genetic

bottlenecks and large seasonal population expansions [18]. However, this type of concerted

temporal analysis has not been attempted in the traditional foci.

Here, we investigate the phylogeography of Y. pestis in Madagascar over an 18 year period

from 1995 to 2012. We generated whole genome sequences for an additional 31 strains,

enabling us to use a total of 37 Malagasy strain sequences to discover additional SNPs that we

used in conjunction with previously identified SNPs and multiple-locus variable-number tan-

dem repeat (VNTR) analysis (MLVA) to genotype 773 Malagasy Y. pestis samples from 1995

to 2012. We then spatially map these samples through time on a fine geographic scale to exam-

ine Y. pestis phylogeographic patterns in Madagascar through time.

Y. pestis temporal phylogeography
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Methods

Ethics statement

The DNAs used in this study (S1 Table) were extracted from Y. pestis cultures or complex

human clinical samples originally isolated or collected, respectively, by the Malagasy Central

Laboratory for Plague and Institut Pasteur de Madagascar as part of Madagascar’s national

plague surveillance plan overseen by the Malagasy Ministry of Health. This program requires

declaration of all suspected human plague cases and collection of biological samples from

those cases. These samples and any cultures or DNA derived from those samples are all de-

linked from the patients from whom they originated and analyzed anonymously if used in any

research study, such as this one. The Northern Arizona University Institutional Review Board

did not require additional review of this research due to the anonymous nature of the samples.

DNAs

DNA was obtained from 773 Y. pestis strains or complex human clinical samples collected

from 1995 through 2012 (S1 Table). Geographical origin data for these samples was very

comprehensive, including at least commune and district of origin, with most (N = 729) also

including the fokontany (i.e., village) of origin (each commune is divided into fokontany). The

samples originated from 384 fokontany, from 175 communes, in 32 districts in Madagascar

(See S1 Fig for a map of the sampled districts). The DNAs included 173 and 85 samples that

were previously analyzed in references [18, 19] and [17], respectively (S1 Table). The remain-

ing 515 novel DNAs were extracted from strains selected to emphasize districts Betafo, Man-

doto, Antsirabe I, Antsirabe II, and some neighboring areas (hereafter referred to as the Betafo

region), which experience some of the highest human plague case incidence rates in Madagas-

car; and district Moramanga and neighboring areas (hereafter referred to as the Moramanga

region), which also declares human plague cases nearly every year, but at a lower frequency

than the Betafo region (S1 Fig). Indeed, the analysis of these areas was very comprehensive,

including all of the available samples from the Betafo, Mandoto, Antsirabe I, Antsirabe II, and

Moramanga districts, and subsets of samples from the surrounding districts over the 18 year

study period (S1 Fig, S1 Table). DNAs consisted of simple heat lysis preparations, extracts

prepared using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), or whole genome

amplification (WGA, QIAGEN, Valencia, CA) products generated from the heat lysis or kit

extraction preps. Most of the samples (90%) were obtained from human plague cases with a

smaller number collected from other mammals or fleas (S1 Table).

Existing SNP and MLVA screening

All DNAs were genotyped, as previously described, using 63 assorted, previously identified

SNPs [18, 19] and a 43-locus MLVA [20]. Screened SNPs included Mad-08 through Mad-48

from reference [19] and Mad-57 through Mad-78 from reference [18] (S2 Table). These SNPs

were screened in a hierarchical fashion, with SNP Mad-43 screened first to determine if a sam-

ple belonged in Group I or II, two previously described major groups in Madagascar [4, 19],

and then additional, appropriate Group I or II SNPs screened to determine which previously

described SNP-defined group (i.e., node) a sample belonged to. MLVA was then used to pro-

vide additional discrimination within each node.

Whole genome sequencing and SNP discovery

A total of 31 strains were selected for whole genome sequencing to identify additional SNPs

for phylogenetic analysis (S1 Table). These strains were chosen based on the quality of the

Y. pestis temporal phylogeography
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available DNA (e.g., DNAs extracted from complex human clinical samples and many of the

heat lysis preps proved unsuitable for whole genome sequencing due to low concentrations)

and also to maximize the potential for new node discovery by selecting phylogenetically

diverse strains with an emphasis on existing nodes containing larger numbers of samples, as

determined from the above SNP and MLVA analyses (S2 Fig) [21]. Illumina sequence libraries

were prepared as previously described [22] and the new genomes sequenced on the Illumina

HiSeq platform (Illumina, San Diego, CA), producing 2 × 100 bp reads. Paired-end Illumina

whole genome sequence data for each newly sequenced strain and previously published whole

genome sequences for six other Malagasy strains (MG05-1020 [GenBank: AAYS00000000],

IP275 [GenBank: AAOS00000000], 53/91, 64/91, 154/98 B, 17/99 B [GenBank: SRP017903])

[4, 18] were aligned using BWA-MEM v0.7.5 against the published genome for strain CO92

[23–25]. Duplicate regions were identified and removed based on a self-alignment of the

CO92 genome using NUCmer v3.23 [26]. SNPs were called on the binary alignment map

(BAM) file [27] using the UnifiedGenotyper method in GATK v2.7.5 [28, 29]. SNPs below a

minimum depth (10x) or minimum allele proportion (90%) were removed from subsequent

analyses. Alignment and SNP calling methods were wrapped by the Northern Arizona SNP

Pipeline (NASP) (http://tgennorth.github.io/NASP/) [30].

New SNP screening

Primers were designed targeting a ~250 bp region around each of 188 newly identified poten-

tial SNP targets (S3 Table) using Primer3 [31, 32] with strain CO92 as the reference sequence

[24] and with the potential SNP located at the center of each amplicon. Primer sets were

ordered from IDT (Coralville, IA) and contained universal tails used to anneal unique indexes

for sample barcoding (forward primers, UT1 = 5’-ACCCAACTGAATGGAGC-3’and reverse

primers, UT2 = 5’-ACGCACTTGACTTGTCTTC-3’) [33]. Assays were grouped into one of

four multiplex PCRs, with 29 assays in mix 1, 63 assays in mix 2, 65 assays in mix 3, and 31

assays in mix 4 (S3 Table). Each multiplex was validated in singleplex using SYBR real-time

PCR with the multiplex PCR used as template [34]. The optimized multiplexes were then

screened across 864 total samples (773 of which were analyzed here) (S1 Table). A single 10 μL

multiplex PCR reaction consisted of final concentrations of the following reagents: 1x 10x

PCR buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.4 μM of each primer, 1.5 units of Platinum Taq

(Invitrogen, Grand Island, NY), and 1 μL of template. Multiplex PCR cycle conditions con-

sisted of 95˚C, 10 min; (94˚C, 30 sec; 55˚C, 30 sec; 72˚C, 30 sec) × 40 cycles; 72˚C, 5 min; held

at 10˚C.

Amplicon libraries were prepared using universal tails as previously described [33]. Briefly,

a cleanup was performed on the multiplex PCR products using a 1:1 bead ratio to PCR product

of 1x Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN) with elution in 30 μL

of a 10 mM Tris-HCl 0.05% Tween 20 solution. Indexed barcodes were then applied to each

sample, providing a unique barcode to identify each sample. The Index Extension PCR was a

single 25 μL PCR containing 12.5 μL of 2x KAPA HiFi HotStart ReadyMix (Kapa Biosystems,

Wilmington, MA), 1 μL 10 μM common universal tail primer, 1 μL 10 μM specific index uni-

versal tail primer, 8.5 μL molecular grade water, and 2 μL cleaned up PCR product. Extension

PCR parameters consisted of 98˚C, 2 min; (98˚C, 30 sec; 60˚C, 20 sec; 72˚C, 30 sec) × 6 cycles;

72˚C, 5 min; held at 10˚C. Following index addition, the PCR product was cleaned up again

using a 1:1 bead ratio with Agencourt AMPure XP beads using an elution of 40 μL of a 10 mM

Tris-HCl 0.05% Tween 20 solution.

Amplicon libraries were normalized to a concentration of 25 nM using the SequalPrep

Normalization Plate Kit, 96-well (Thermo Fisher Scientific, Waltham, MA) according to

Y. pestis temporal phylogeography
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manufacturer’s instructions. Following normalization, the amplicon libraries were pooled

in sets of 96 samples using 5 μL from each of the multiplexes, resulting in nine pools of 96

uniquely barcoded samples across 188 targets. Final sample pools were generated by pooling

100 μL from each of three of the nine plate pools into a single tube, for three final pools of 288

samples each. The three final pools were concentrated by conducting another cleanup using a

1:1 bead ratio with Agencourt AMPure XP beads and an elution of 30 μL of a 10 mM Tris-HCl

0.05% Tween 20 solution. These final, concentrated pools were then sequenced on the Illumina

MiSeq platform using 2 × 300 bp version 3 sequencing chemistry (Illumina, San Diego, CA).

Amplicon sequences were aligned to the reference genome of strain CO92 [24] using

BWA-MEM [23] and SNPs were called with the UnifiedGenotyper method in GATK [28, 29]

in conjunction with the NASP pipeline (http://tgennorth.github.io/NASP) [30]. The resulting

SNP matrix was filtered to focus on the SNPs to be verified.

Phylogeographic analyses

A SNP phylogeny was generated for all 773 samples using data from 42 informative SNPs from

the 63 screened previously identified SNPs and 170 additional informative SNPs identified

here from among the 188 potential new SNP targets (Fig 1A, S2 and S3 Tables). Neighbor-join-

ing dendrograms based upon MLVA data were then constructed using MEGA6 [35] for each

node containing >1 sample to further discriminate among samples. Subgroups were identified

primarily based on SNPs, but also using MLVA for unresolved samples belonging to the basal

k and d nodes (Fig 1). The geographic distributions of all of the identified subgroups were then

mapped through time to determine temporal phylogeographic patterns using ArcGIS 10.2.1

for Desktop (ESRI, Redlands, CA) and geographic point data obtained from GeoPostcodes

(http://www.geopostcodes.com/) for the fokontany and communes represented in the dataset

(Figs 2, 3 and 4). Additional maps illustrating the geographic distributions of all of the identi-

fied SNP determined nodes were also generated (Figs 5 and 6).

Estimation of divergence times

To determine if evolution of Y. pestis in Madagascar is operating under a molecular clock, we

reconstructed a neighbor-joining phylogeny based upon the SNPs identified among the 31

strains sequenced here (S1 Table) and the previously published genomes for strains IP275

[GenBank: AAOS00000000] and CO92 [24]. We then uploaded the newick file, with associated

dates of isolation, into TempEst [36], enforcing the selection of the best fitting root (CO92)

and the correlation function. The correlation coefficient and R2 values were calculated, and we

used a permutation test (10,000 permutations of distances) in R to determine if the observed

correlation coefficient was better than would be expected by chance.

To estimate divergence times for subgroups of Y. pestis in Madagascar, we employed a

Bayesian molecular clock method as implemented in the BEAST v1.8.0 software package [37].

Model selection analyses were carried out in MEGA 7.0.9 for the 33 included genomes, where

the corrected Akaikes’s Information Criterion [38, 39] results were used to determine the best

fitting models. The GTR model was found to be best fitting for the dataset. Because only vari-

able sites were included in this analysis, we corrected for the invariant sites by specifying a

Constant Patterns model in the Patterns List of the BEAST xml file (A’s: 1,219,459, C’s:

1,102,556, T’s: 1,217,289, and G’s: 1,114,076), and then also performed an uncorrected analysis

for comparison. To determine the best fitting molecular clock and demographic model combi-

nations for this dataset, path sampling [40] and stepping stone [41] sampling marginal likeli-

hood estimators were employed [42, 43]. Model comparison analyses indicated that the

combination of the uncorrelated lognormal molecular clock (UCLN) [44] and the Bayesian

Y. pestis temporal phylogeography
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Fig 1. SNP and MLVA phylogenies depicting 18 major phylogenetic subgroups identified among 773 Malagasy Yersinia pestis

samples. (A) SNP phylogeny based on 212 informative SNPs identifying 100 individual nodes (circles and stars) among 770 Malagasy Y.

pestis samples (only the lineage could be identified for the remaining 3 samples, and not the specific node). Stars indicate terminal nodes

defined by a sequenced strain. Circles indicate intermediary nodes (i.e., collapsed branch points) along the lineages containing groups of

samples. Branch points that did not contain any samples are labeled in black italics. A dashed arrow indicates a branch leading to a single,

Y. pestis temporal phylogeography
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Skyride [45] models best fit the SNP dataset; however, timing estimates for both the TMRCA-

All and TMRCA-Madagascar/Group I were starkly bimodal. We instead selected the more

conservative UCLN-Constant model, which performed slightly worse in the model compari-

son, but incorporated fewer parameters. In addition, and without the incorporation of interior

calibrations, usage of the UCLN-Constant model resulted in estimates of both the TMRCA-All

and TMRCA-Madagascar/Group I clades that were historically supported (Table 1).

For each dataset, four independent Markov chain Monte Carlo (MCMC) chains were run

for 100 million generations each, with parameters and trees drawn from the posterior every

10,000th step. Visual trace inspection and calculation of effective sample sizes was conducted

using Tracer [46], confirming MCMC mixing within and among each of four replicate chains.

LogCombiner [37] was used to merge the samples from each chain. The first 10% of each

chain was discarded as burn-in, and then each chain was resampled every 40,000th step. Fig-

Tree [47] was used to visualize the resulting phylogenies.

Results

Phylogenetic diversity of Y. pestis in Madagascar

There is considerable phylogenetic diversity among Y. pestis strains from Madagascar. The 170

new informative SNPs identified here (S2 Table) considerably expanded on previously pub-

lished SNP phylogenies of Y. pestis in Madagascar [4, 18, 19]. The previously identified Groups

I and II were still readily apparent, but with several additional lineages within these groups.

Group I included the basal k node and seven lineages, five of which (j, l, q, r, and s) were previ-

ously described [18, 19] and two of which (y and z) were identified here (Fig 1A). Group II

included the basal d node and six lineages, one of which (h) was previously described [19]

and five of which (t–x) were identified here (Fig 1A). In addition to the seven novel lineages,

additional resolution within the previously described h, j, q, and s lineages [18, 19] was also

identified (Fig 1A). In all, 100 individual nodes were identified, providing considerable SNP

resolution among the 773 Malagasy Y. pestis samples (Fig 1A, Table 2). MLVA provided addi-

tional resolution within the SNP determined nodes, with a resolving power range of 41%–

100% (average of 82%) for nodes with>1 sample (Table 2). Within the basal d and k nodes,

MLVA identified one (II.D.1) and four (I.C, I.E, I.G, and I.L) additional phylogenetic sub-

groups, respectively (Fig 1B). These subgroups mostly corresponded to previously identified

MLVA subgroups [17, 19] from which no strains have yet been sequenced, preventing further

lineage identification using SNPs. In all, we identified 18 major subgroups among the 773 ana-

lyzed samples, including 13 SNP lineages (hereafter referred to as subgroups h, j, l, and q–z)

and 5 MLVA subgroups (hereafter referred to as subgroups I.C, I.E, I.G, I.L, and II.D.1)

(Fig 1).

previously identified, terminal node not represented among the samples in this analysis. Lineages (lower case letters) and nodes within

lineages (numbers within circles and stars) were named as in [17–19], with new letters and numbers assigned to newly identified lineages and

nodes, respectively. Basal nodes d and k are represented by pie charts, indicating the presence of multiple MLVA identified subgroups within

these nodes. Color shading indicates the 18 identified phylogenetic subgroups and, to the extent possible, corresponds to the subgroup colors

used in reference [19]. Solid pale green and striped pale green, respectively, indicate the new SNP lineage (w) and remaining subset of

samples within basal node d that were split in this analysis from a single previously identified subgroup. The number of SNPs on branches with

>1 SNP are indicated in red. The single SNP differentiating between Groups I and II is indicated by a perpendicular red line on the branch

between nodes d and k. (B) MLVA phylogenies of 10 and 38 Malagasy Y. pestis samples from basal SNP nodes d and k, respectively. The

MLVA phylogenies consist of neighbor-joining dendrograms constructed in MEGA6 [35] using mean character based distance matrices.

Bootstrap values�50 (generated in PAUP 4.0b10 (D. Swofford, Sinauer Associates, Inc., Sunderland, MA) based upon 1,000 simulations)

supporting MLVA phylogeny branches are indicated. One and four additional phylogenetic subgroups consistent with previous analyses [19]

were identified within the MLVA phylogenies of nodes d and k, respectively. In addition, 1 and 3 samples within nodes d and k, respectively, did

not fall into any identified phylogenetic subgroup and were labeled with a “+” or an “*”, and classified as II.NONE and I.NONE, respectively.

https://doi.org/10.1371/journal.pntd.0005887.g001
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Fig 2. Geographic distribution of 355 Malagasy Yersinia pestis samples from 1995 to 2000. The map of Madagascar in the upper

left indicates elevation, all of the geographic points in this study (small black points), and the portion of Madagascar represented in the

other panels (rectangle). The geographic distribution of identified subgroups is presented in separate panels for each year. Circles in

the panels represent the locations of the fokontany (i.e., villages) or commune centroids (when the fokontany was unknown) where

samples were collected. In some cases where separate circles were too close together to be visibly distinguished at this scale, a single

circle indicating the overlapping circles was substituted. This occurred primarily for fokontany within communes Mahajanga and

Mahabibo within district Mahajanga I, and for fokontany within the various arrondissements (i.e., administrative divisions) within district

Antananarivo Renivohitra, but also occasionally occurred at other locations. Colors of the mapped circles indicate identified subgroups

and correspond to the subgroup color designations in Fig 1. Divisions within circles indicate that multiple subgroups were found at that

location in that year. Unaffiliated Group I and II samples (i.e., I.NONE and II.NONE) are indicated by a “*” and a “+”, respectively.

https://doi.org/10.1371/journal.pntd.0005887.g002

Y. pestis temporal phylogeography

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005887 September 5, 2017 9 / 27

https://doi.org/10.1371/journal.pntd.0005887.g002
https://doi.org/10.1371/journal.pntd.0005887


As previously observed [18, 19], there was considerable congruence between the SNP and

MLVA analyses. First, the previously identified congruence between lineages h, j, l, q, r, and s

and the previously described MLVA subgroups II.B, I.J, I.H, I.B, I.F, and I.A, respectively, was

still apparent [18, 19] (S2 Fig). Second, novel lineages t, v, and y corresponded with the previ-

ously identified MLVA subgroups II.A, II.C, and I.D, respectively [19] (S2 Fig). Third, novel

Fig 3. Geographic distribution of 373 Malagasy Yersinia pestis samples from 2001 to 2008. The geographic distribution of

identified subgroups is presented in separate panels for each year, with symbols and colors as in Fig 2.

https://doi.org/10.1371/journal.pntd.0005887.g003
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lineages u, x, and z were first tentatively identified as new MLVA subgroups in the initial

MLVA analysis (S2 Fig) used to select sequencing candidates and then confirmed using the

new genome sequences and SNP analyses. Finally, the new lineage w corresponds to a subdivi-

sion within the previously identified MLVA subgroup II.D [19], with the other samples

belonging to this MLVA subgroup remaining in the basal d node within identified MLVA sub-

group II.D.1 (Fig 1, S1 Table, S2 Fig).

Geographic distribution. Overall, the geographic distributions of the 18 major sub-

groups were consistent with previous observations [17, 19] but with greater phylogeographic

resolution thanks to the larger number of samples and use of finer scale fokontany geographic

point data. Subgroup s remained the most geographically widespread, occurring in 23 of the

32 districts sampled here (Figs 2, 3, 4 and 5D, S1 Table). It continued to be concentrated in

the northern central highlands in and around the capital of Antananarivo, but was also found

further south. In addition, as previously determined [18, 19], it was also the subgroup respon-

sible for the re-emergence of plague in the port city of Mahajanga during the 1990s (Fig 2).

Individual SNP defined nodes within subgroup s displayed some additional spatial clustering,

with newly identified nodes s10 –s11 found mostly in the south in districts Ambositra and

southern Fandriana, s14 found mostly in districts Soavinandriana and Faratsiho, s15 –s16 iso-

lated to district Faratsiho, and s17 –s18 and s20 –s22 found mostly in Antananarivo and the

immediately adjacent district Manjakandriana. The geographic distributions of previously

identified nodes s03 –s09 were consistent with previous observations [17, 18], with nodes s03

and s05 dispersed across the overall distribution of subgroup s, s04 found mostly in district

Miarinarivo, and s08 –s09 found almost entirely in Mahajanga. Newly identified nodes s13

and s19 were also dispersed throughout the subgroup s distribution (Fig 5D). Overall,

spatial clustering of the individual nodes was consistent with the SNP phylogeny, with

Fig 4. Geographic distribution of 45 Malagasy Yersinia pestis samples from 2009 to 2012. The geographic distribution of

identified subgroups is presented in separate panels for each year, with symbols and colors as in Fig 2.

https://doi.org/10.1371/journal.pntd.0005887.g004
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Fig 5. Geographic distributions of identified SNP nodes within Group I. Four map panels showing the geographic distributions of

identified SNP nodes within Group I phylogenetic subgroups j (A); l, y, and z (B); q (C); and s (D) are presented. A full map of Madagascar in

the lower right indicates the portion of Madagascar included in each of the expanded map panels, with each expanded section indicated by

a colored rectangle corresponding to the color associated with one of the phylogenetic subgroups depicted in the corresponding expanded

panel. Circles within the expanded map panels represent the locations of the fokontanys (i.e., villages) or commune centroids (when the
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phylogenetically close nodes clustered near to each other spatially (Figs 1A and 5D). Concor-

dant with this observation, those nodes that tended to be more geographically dispersed were

also generally more basal within the phylogeny and/or contained larger numbers of samples

with substantial MLVA diversity (Fig 1A, Table 2); this suggests that additional whole genome

fokontany was unknown) where samples were collected. In some cases where separate circles were too close together to be visibly

distinguished at this scale, a single circle indicating the overlapping circles was substituted. This occurred primarily for fokontany within

communes Mahajanga and Mahabibo within district Mahajanga I, and for fokontany within the various arrondissements (i.e., administrative

divisions) within district Antananarivo Renivohitra, but also occasionally occurred at other locations. Colors within the mapped circles

correspond to the subgroup color designations in Fig 1. Divisions within circles indicate that multiple SNP determined nodes were found at

that location. Numbers within circles and pie chart slices indicate the node within a given subgroup from Fig 1A that the mapped samples

belong to. Overlapping circles and pie chart slices representing the same node were merged together and identified with a single label to

simplify the maps. The specific node could not be definitively determined for two subgroup q samples and one subgroup s sample, so no

number is shown.

https://doi.org/10.1371/journal.pntd.0005887.g005

Fig 6. Geographic distributions of identified SNP nodes within Group II. Four map panels showing the geographic

distributions of identified SNP nodes within Group II phylogenetic subgroups v (A), h (B), t (C), and u, w, and x (D) are presented,

with symbols and colors as in Fig 5. A full map of Madagascar indicates the portion of Madagascar included in each of the

expanded map panels, with each expanded section indicated by a colored rectangle corresponding to the color associated with

one of the phylogenetic subgroups depicted in the corresponding expanded panel.

https://doi.org/10.1371/journal.pntd.0005887.g006
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sequencing of strains within these nodes would lead to further SNP discovery, node identifica-

tion, and likely spatial clustering among the newly discovered nodes. Subgroup s was also

temporally persistent, with at least one sample identified in almost every year of this 18 year

analysis (Figs 2, 3 and 4, S1 Table). As such, this subgroup remained one of the most success-

ful subgroups identified in Madagascar, persisting over many years over a large geographic

area and in several different species involved in plague transmission (Figs 2, 3 and 4,

S1 Table).

Other Group I subgroups also showed persistence through time, despite smaller sample

sizes. Few of the novel samples were found to belong to subgroups l, r, y, I.C, I.E, I.G, and I.L,

likely due to the lack of sampling emphasis in the geographic areas where these subgroups

were found (S1 Table). However, temporal analysis of these subgroups indicated persistence of

most of these subgroups in the same geographic locations for periods of time ranging from 4

to 13 years, with 0 to 3 samples identified in a given year for individual subgroups (Figs 2, 3

and 4, S1 Table). Similar to subgroup s, the individual nodes identified within subgroups l and

y also exhibited some additional spatial clustering that was consistent with the SNP phylogeny

(Figs 1A and 5B). Only two subgroups were restricted to a single sampling year: subgroup I.C

with two samples identified in district Bealanana in 2000 and subgroup I.L with 17 samples

identified in district Ambalavao in 2007 (Figs 2 and 3, S1 Table). However, neither of these

geographic areas were particularly well sampled, which may have contributed to the failure to

observe these subgroups in other sampling years.

Consistent with previously identified subgroups, the three entirely new subgroups identi-

fied here were also found to occupy distinct geographic locations and to persist through time

in those areas. Subgroup z, the one entirely new subgroup identified within Group I (Fig 1A),

was concentrated in district Antanifotsy and neighboring Antsirabe II, with representatives

identified in this area over a 12 year period (Figs 2, 3, 4 and 5B, S1 Table). Two entirely new

subgroups, u and x, were identified within Group II (Fig 1A). Subgroup u was restricted to the

northern half of district Fandriana, with representatives identified in this area over a 14 year

period. Subgroup x samples were also identified over a 14 year period and were mostly found

in the area defined by northern Faratsiho and southern Miarinarivo and Arivonimamo (Figs

2, 3, 4 and 6D, S1 Table). Individual nodes within these three new subgroups displayed some

additional spatial clustering, consistent with the SNP phylogeny (Figs 1A, 5B and 6D), and

similar to what was observed for subgroups l, s, and y. Indeed, these new subgroups may be

the primary phylogenetic types found in their respective geographic areas, which were not well

sampled in previous analyses [17, 19]. However, this requires confirmation, as sampling in

these areas was still limited in this analysis (Figs 2, 3 and 4, S1 Table), and there was at least

some geographic overlap between the newly identified subgroup x and the highly successful

subgroup s (Figs 2, 3 and 4).

Table 1. Divergence time estimates for nodes of interest.

Uncorrected AB-Corrected

Mean Median 95% CI Mean Median 95% CI

TMRCA-All (CO92 & Madagascar) 1857 1905 1722–1973 1880 1913 1754–1974

TMRCA-Madagascar/Group I 1928 1954 1855–1987 1927 1954 1864–1987

TMRCA-Group II 1949 1960 1889–1994 1951 1965 1889–1991

The SNP Ascertainment Bias Correction (AB-Corrected) data set has been corrected for the appropriate counts of invariant A’s, T’s, G’s, and C’s, allowing

for the estimation of distances based on the true distribution of nucleotides for this data set. TMRCA: the most recent common ancestor.

https://doi.org/10.1371/journal.pntd.0005887.t001
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Table 2. MLVA diversity within SNP nodes.

SNP Node No. Samples No. MLVA Genotypes MLVA Resolving Power

d 10 10 100%

h03 17 14 82%

h04 1 1 100%

h05 17 11 65%

h06 1 1 100%

h07 25 15 60%

h08 6 4 67%

h09 3 2 67%

h10 2 1 50%

h11 18 8 44%

h12 5 5 100%

h13 1 1 100%

h14 1 1 100%

h15 1 1 100%

h16 3 2 67%

j01 9 8 89%

j02 14 12 86%

j03 36 30 83%

j04 1 1 100%

j05 8 6 75%

j06 1 1 100%

j07 16 8 50%

j08 4 3 75%

j09 5 4 80%

j10 2 2 100%

k 38 30 79%

l01 4 4 100%

l02 1 1 100%

q04 9 9 100%

q05 3 2 67%

q06 30 19 63%

q08 7 7 100%

q09 1 1 100%

q10 34 25 74%

q11 1 1 100%

q12 12 12 100%

q13 1 1 100%

q14 1 1 100%

r 5 4 80%

s03 23 21 91%

s04 6 6 100%

s05 34 15 44%

s08 34 14 41%

s09 24 11 46%

s10 10 9 90%

s11 2 2 100%

s12 1 1 100%

(Continued )
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Table 2. (Continued)

SNP Node No. Samples No. MLVA Genotypes MLVA Resolving Power

s13 11 10 91%

s14 10 10 100%

s15 4 3 75%

s16 2 1 50%

s17 1 1 100%

s18 4 4 100%

s19 9 7 78%

s20 6 5 83%

s21 3 3 100%

s22 1 1 100%

t01 17 15 88%

t02 1 1 100%

t03 5 5 100%

t04 2 2 100%

t05 1 1 100%

t06 4 4 100%

t07 8 8 100%

t08 2 2 100%

t09 4 4 100%

t10 11 9 82%

t11 2 2 100%

u01 3 3 100%

u02 1 1 100%

u03 2 2 100%

v01 7 4 57%

v02 17 15 88%

v03 1 1 100%

v04 4 4 100%

v05 2 2 100%

v06 7 6 86%

v07 1 1 100%

v08 39 36 92%

v09 13 10 77%

v10 3 2 67%

v11 10 7 70%

v12 10 9 90%

v13 2 1 50%

w01 3 3 100%

w02 16 10 63%

x01 4 4 100%

x02 1 1 100%

x03 1 1 100%

y01 1 1 100%

y02 1 1 100%

y03 6 5 83%

y04 2 2 100%

y05 2 2 100%

(Continued )
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Betafo region

A far more robust phylogeographic analysis was possible in the heavily sampled Betafo region

(districts indicated with yellow shading and parts of districts indicated with yellow striped

shading in S1 Fig). Several geographically distinct subgroups were previously identified in this

region [17, 19]. These subgroups, identified here as subgroups h, j, t, v, w, and II.D.1, were also

observed in this analysis, and showed persistence in the same geographic areas over most of

the 18 year study period (Figs 2, 3, 4, 5A and 6). Specific geographic distributions of the indi-

vidual subgroups were consistent with previous observations [17, 19] but much expanded. In

summary, subgroup j dominated in district Mandoto with some overlap with subgroup v,

which dominated in the neighboring Betafo district (Figs 2, 3, 4, 5A and 6A). Subgroup h was

most prominent southeast of subgroup v, being found mostly in the southwestern part of

district Antsirabe II, but also in Antsirabe I, southeastern Betafo, and northeastern Ambatofi-

nandrahana (Figs 2, 3, 4 and 6B). Subgroup w was also found in district Antsirabe II and

northeastern Ambatofinandrahana, but, in general, was further east than subgroup h (Figs 2,

3, 4 and 6D). Subgroup t was mostly found further south, in districts Manandriana, Ambositra,

Fandriana, and eastern Ambatofinandrahana, but also occurred in the southern part of district

Antsirabe II, mostly in between subgroups h and w (Figs 2, 3, 4 and 6C). Subgroup II.D.1 was

on the periphery of the Betafo region in eastern Ambatofinandrahana, and was, in general, fur-

ther south than subgroup h and further west than subgroup t (Figs 2, 3 and 4).

Geographic patterns among the individual SNP defined nodes within subgroups h, j, t, and

v were less distinct. Similar to other subgroups, the overall geographic distributions of the indi-

vidual nodes within each of these subgroups were consistent with the SNP phylogeny, with

phylogenetically close nodes clustered near to each other spatially (Figs 1A, 5A, 6A, 6B and

6C). However, compared to other subgroups, there was far more overlap and fewer distinct

geographic patterns among the individual nodes, particularly for subgroups h, j, and v. All

three of these subgroups contained several nodes that were dispersed across the overall geo-

graphic distribution of their respective subgroups, including h03, h05, and h11 for subgroup h,

j01 –j03 and j05 for subgroup j, and v09 and v11 –v13 for subgroup v (Figs 5A, 6A and 6B).

Similar to the geographically dispersed nodes within subgroup s, most of these nodes were

more basal within the phylogeny and/or contained larger numbers of samples and consider-

able MLVA diversity (Fig 1A, Table 2). The other nodes within these subgroups were more

spatially restricted, but were also less geographically distinct compared to the spatially

restricted nodes in other subgroups (Figs 5 and 6). The individual nodes identified within sub-

group t were more geographically distinct, with t02 located in southwestern Antsirabe II, t03 –

t05 found mostly in northern Ambositra and western Fandriana, t06 –t08 found further south

Table 2. (Continued)

SNP Node No. Samples No. MLVA Genotypes MLVA Resolving Power

z01 1 1 100%

z02 1 1 100%

z03 5 5 100%

z04 3 2 67%

z05 1 1 100%

z06 2 1 50%

The number of samples within each SNP defined node in Fig 1A is indicated, along with the number of MLVA genotypes among those samples and the

calculated resolving power of MLVA among the samples in each node.

https://doi.org/10.1371/journal.pntd.0005887.t002
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in eastern Ambatofinandrahana, northern Manandriana, and western Ambositra, and t09 –

t11 found predominantly even further south in southeastern Ambatofinandrahana, southern

Manandriana, and southwestern Ambositra. Basal node t01 was more geographically dis-

persed, but was concentrated in the northernmost part of the geographic range of subgroup t

in southwestern Antsirabe II, along with t02 (Fig 6C).

Moramanga region

Samples from the Moramanga region (districts indicated with purple shading and parts of dis-

tricts indicated with purple striped shading in S1 Fig), the other heavily sampled region in this

analysis, showed much less phylogenetic diversity than samples from the Betafo region. As pre-

viously observed [17, 19], the Moramanga region was dominated by subgroup q, with very few

samples from this region belonging to any other subgroup (Figs 2, 3 and 4). In contrast to pre-

vious analyses, this analysis also revealed substantial phylogeographic structure among the

individual SNP determined nodes within this subgroup, with q06 found predominantly in dis-

trict Manjakandriana, the southern tip of Anjozorobe, and a small area in western Mora-

manga, q05 and q08 –q09 found mostly further north in district Anjozorobe, q10 –q11 found

predominately in eastern Moramanga, a single q14 sample found in southern Moramanga,

and q12 found in the northernmost part of the geographic distribution of subgroup q, in dis-

tricts Andilamena, Tsaratanana, and northeastern Anjozorobe. Node q04, a more basal node

in the q subgroup, was the least geographically defined, with representatives identified in

between the distributions of q06 and q10 in district Moramanga, and also in a small area in

eastern Anjozorobe in the midst of some q05, q08, and q12 representatives (Fig 5C). Previous

analyses were consistent with these phylogeographic patterns, but far less defined due to the

much more limited sample sizes and lower phylogenetic resolution in those analyses [17, 19].

Similar to the other subgroups, subgroup q also displayed temporal persistence within its geo-

graphic range in the northeastern central highlands over the 18 year study period (Figs 2, 3

and 4).

Temporal variation

Although there was an overall pattern of temporal persistence in the same geographic areas

over the 18 year study period for most of the identified subgroups, many subgroups varied in

the frequency of samples identified from year to year (Figs 2, 3 and 4, S1 Table). Although the

extent of this variation could not be determined for many of the subgroups due to uneven sam-

pling in some geographic areas, the comprehensive sampling of the Betafo and Moramanga

regions allowed for a closer examination of this variation for the subgroups found predomi-

nantly in these regions. These subgroups (h, j, q, t, v, and w) varied in the number of samples

identified per year for each subgroup, with high and low sampling years observed for each sub-

group. Moreover, this variation did not follow the same pattern among all of the subgroups.

For example, the number of subgroup v samples identified in 1999 and 2001 were relatively

high compared to the intervening year, in 2000. In contrast, subgroups h and q experienced

peaks in sample identification in 2000 and lower frequencies of sample identification in the

bracketing years of 1999 and 2001 (Fig 7).

Dispersal events

In contrast to the overall pattern of geographic and temporal stability of the 18 identified sub-

groups, we observed some subgroup representatives in geographic areas outside their primary

geographic range. Most interesting were several examples of more long distance dispersal

events, such as five samples of subgroup q (found primarily in the northeastern central
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highlands, Fig 5C) that were isolated in and around the Betafo region in 1996 (N = 1), 1997

(N = 2), and 2006 (N = 2), respectively (Figs 2, 3, 4 and 5C, S1 Table). Interestingly, these five

samples included representatives of five different SNP defined nodes within this subgroup (Fig

5C, S1 Table). All of the other samples assigned to these five nodes were isolated in the north-

eastern central highlands, suggesting that these nodes evolved there. Together, these patterns

strongly suggest that the five samples of subgroup q isolated in the Betafo region were the

result of independent dispersal events from the typical geographic range of subgroup q in the

northeastern central highlands. Indeed, many of the occurrences of subgroups outside of their

typical geographic ranges were likely due to independent dispersal events rather than an initial

dispersal event followed by localized establishment of the transferred subgroup, as there was

little to no evidence of persistence of a “transferred” subgroup in a non-typical geographic

area. However, it should also be noted that this lack of evidence could have been due to inade-

quate sampling that failed to detect any low level persistence of these “transferred” subgroups.

Regardless, any dispersal events, particularly over long distances, are likely human-mediated

and either related to the accidental transport of rats and fleas along with legitimate shipments,

or could also be related to humans who were infected in a location distant from where they

sought medical attention. Indeed, the black rat has been shown to have a range of only 40–50

m during normal activities, with travel up to only ~350 m in pursuit of resources [48], and

so rat dispersal alone is unlikely to account for these types of observed transfers of Y. pestis
genotypes.

Other examples of potential dispersal events involved shorter distances and could have

multiple causes. These included samples of subgroup j occasionally being isolated within the

typical geographic range of neighboring subgroup v and vice versa, as well as other similar

crossover type events that occurred among the other densely packed and phylogenetically

diverse subgroups found in the highly active Betafo region (Figs 2, 3 and 4). These examples

may represent dispersal events over shorter distances that could have been rat- or human-

mediated. Alternatively, these examples might not reflect dispersal events at all but could,

instead, indicate subgroups that are actually established in more than one geographic area but

are very rare in the area in which the “dispersal event” appears to have occurred, at least as rep-

resented by human derived samples.

Fig 7. Variation in sampling frequency over time. The number of samples identified each year in this analysis for each

Yersinia pestis subgroup found predominantly in the well-sampled Betafo and Moramanga regions.

https://doi.org/10.1371/journal.pntd.0005887.g007

Y. pestis temporal phylogeography

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005887 September 5, 2017 19 / 27

https://doi.org/10.1371/journal.pntd.0005887.g007
https://doi.org/10.1371/journal.pntd.0005887


Divergence times

To determine whether or not Y. pestis in Madagascar is evolving according to a molecular

clock, we performed a linear regression and found that 28% (R2 = 0.28) of the variation in

root-to-tip distances could be explained by time (S3B Fig). Permuting the distances 10,000

times revealed that the observed correlation coefficient, R = 0.527, was better than 99% of all

randomly generated correlation coefficients (S3C Fig). These analyses revealed that although

strict molecular clock methods were not appropriate due to the limited, albeit statistically sig-

nificant, variation of distance explained by time, relaxed molecular clocks were well-suited for

divergence time estimation.

Bayesian estimation of divergence times using the ascertainment bias correction with a

relaxed molecular clock and constant population size model, revealed that CO92 and the Mala-

gasy strains diverged from their MRCA in 1880 (mean date; Table 1, Fig 8), which was consis-

tent with a split following the onset of the third pandemic in 1855 in Yünnan, China [2], and

prior to the introduction of Y. pestis to Madagascar in 1898 [12]. The estimated mean TMRCA

for the Malagasy strains, and therefore for the basal Group I, was 1927 (Table 1, Fig 8), just 29

years after the introduction of plague to Madagascar. Importantly, the confidence intervals for

this TMRCA (95% CI: 1864–1987, Table 1) did not stretch back in time beyond the third pan-

demic, indicating that our divergence time analysis, using only tip calibrations, was supported

by historical events. The mean divergence of the Group II Malagasy strains from Group I was

estimated to have occurred in 1951 (Table 1, Fig 8). Indeed, the estimated mean divergence

times for most of the subgroups identified in this analysis were after 1950, which was when

several successful plague control methods were implemented in Madagascar that led to a large

decrease in the numbers of human cases [9]. Likewise, the steady increase in human plague

cases that began in the 1980s in Madagascar [9] was consistent with the estimated mean diver-

gence times for the different lineages within those subgroups with multiple whole genome

sequence representatives, which ranged from 1976 to 1990 (Fig 8). A final observation from

this analysis was that although the mean and median divergence times for the deeper CO92

and Malagasy strains were impacted by the SNP ascertainment bias correction, the confidence

intervals for all divergence time estimates, and also the mean and median divergence times for

the more recent Group I and Group II divergences, were nearly identical (Table 1).

Discussion

Plague continues to be a significant public health concern in Madagascar, with hundreds of

human cases reported annually [9, 49]. Human cases exhibit strong seasonality as well as spa-

tial and temporal variation in the affected fokontany. Most human cases occur from October

to April during the warm rainy season [8, 50, 51] and different fokontany are affected in differ-

ent years, with some fokontany unaffected despite nearby fokontany having cases [48]. The

seasonality of plague is linked to population dynamics of the black rat and its flea vectors, with

onset of the plague season in October coinciding with the minimum abundance of rats and

maximum abundance of fleas [8, 10, 11]. The basis for the spatial and temporal variation in

affected fokontany is less clear [48], but could be related to similar ecological factors or sto-

chastic forces. Our temporal phylogeographic analysis of 773 Y. pestis samples from 32 districts

in Madagascar, collected over 18 years, with an emphasis on the Betafo and Moramanga

regions, provides insight into this and other aspects of plague ecology in Madagascar.

Previous analyses have suggested that Y. pestis in Madagascar is maintained in multiple,

geographically and phylogenetically distinct subpopulations likely sustained by the black rat

[17–19]. Our analysis is consistent with this hypothesis and suggests that these subpopulations

are spatially and temporally stable, with the same phylogenetic types persisting in the same

Y. pestis temporal phylogeography

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005887 September 5, 2017 20 / 27

https://doi.org/10.1371/journal.pntd.0005887


geographic locations over a period of almost two decades (Figs 2, 3 and 4). This observed tem-

poral phylogeographic pattern suggests that persistent endemic cycles of Y. pestis transmission

within local areas are responsible for the long term maintenance of plague in Madagascar,

rather than repeated episodes of wide scale epidemic spread. Indeed, there is little evidence for

frequent, widespread selective sweeps of individual genotypes. Dispersal events do occur, but

seldom appear to result in the successful establishment of a new genotype in a new location

(Figs 2, 3 and 4).

Fig 8. Maximum clade credibility phylogeny, reconstructed in BEAST, with mean divergence times for whole genome sequences

from 32 Malagasy Yersinia pestis strains and reference strain CO92. A maximum clade credibility phylogeny based upon SNPs identified

among the 31 Malagasy Y. pestis strains sequenced here and the previously sequenced Malagasy strain IP275 and reference strain CO92.

Malagasy strain branches are labeled with the SNP nodes from Fig 1, the strain IDs from S1 Table, and the year of isolation of the strain. Colors

of the clades and/or branches indicate identified subgroups and correspond to the subgroup color designations in Fig 1. A timeline indicates the

estimated mean divergence times for the various branch points. Estimated mean divergence times for various nodes of interest are also

indicated on the phylogeny. Yellow circles indicate the posterior probabilities for each of the clades, where larger circles indicate higher

confidence.

https://doi.org/10.1371/journal.pntd.0005887.g008
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The failure of a dispersal event to result in successful ecological establishment may be

strongly affected by the presence or absence of an existing locally established and cycling geno-

type. For example, Mahajanga was likely free of Y. pestis when a long distance dispersal event

from the central highlands allowed for at least the temporary successful establishment of sub-

group s in this city in the early 1990s [18]. Another, related factor that likely assists in plague

establishment is the presence of a high abundance of susceptible hosts [5, 52]. This very likely

played a role in the Mahajanga outbreaks, which began in an area with poor hygiene and large

numbers of rats and shrews [13, 14, 53]. Similarly to Mahajanga, the apparent spread of

subgroup s from its presumed origin in district Ambositra to Antananarivo and the surround-

ing areas [18, 19] may have been facilitated by a lack of locally circulating genotypes and per-

haps an abundance of susceptible hosts. Supporting this idea is the fact that for ~30 years

following the successful plague control campaigns of the 1950s there were only 20 to 50

human plague cases reported per year in Madagascar, and in Antananarivo specifically no

cases were reported between 1953 and 1978 [9]. Following this, the number of annual human

plague cases increased steadily [9], with notable subgroup s-linked outbreaks in Antananarivo

and Mahajanga in the 1990s [9, 18, 19]. This suggests that there may have been an open niche

in Antananarivo and the surrounding areas that subgroup s was able to occupy following a for-

tuitous dispersal event, similar to what happened in Mahajanga. Interestingly, the estimated

mean divergence time for the various lineages within subgroup s was 1976 (Fig 8), which is

consistent with this timeline. Intriguingly, the rodent population in Antananarivo at this time

consisted of approximately 80% Rattus norvegicus, a host not usually thought of as highly sus-

ceptible to plague [53]. By the late 1990s, R. norvegicus made up 95% of the rodent population

and both R. rattus and R. norvegicus from Antananarivo displayed high levels of plague resis-

tance [54]. Thus, if subgroup s has only been present in Antananarivo since the late 1970s, it

succeeded in becoming established and persisting in a relatively resistant host population. Pre-

vious studies have also suggested that subgroup s may possess some adaptive advantage affect-

ing its ability to become established following a dispersal event [18, 19]. If so, this advantage

does not appear to have enabled subgroup s to further expand its geographic range [17, 19]

during the 18 year period of this analysis, despite likely dispersal events of this subgroup to

other areas (Figs 2, 3, 4 and 5D). It is possible that the presence of other locally established and

cycling genotypes (i.e., an occupied niche), as documented here, inhibited the establishment of

this or other transferred genotypes during the 18 year period of this analysis (Figs 2, 3 and 4).

The Betafo and Moramanga regions emphasized in this analysis exhibited distinct differ-

ences in observed phylogenetic diversity that may be related to landscape differences between

these two regions. The Moramanga region consists of a wide valley along the Mangoro River

that contains large and fragmented forested areas and gradually decreases in elevation from

north to south. The Betafo region, in contrast, consists of a much more diverse landscape.

District Mandoto in the western portion of this region consists of a plateau area with rolling

hills and a fairly flat relief. To the east, district Betafo is more rugged, with relatively large

changes in elevation between fokontany. District Antsirabe is even more mountainous, with

fokontany located in deep valleys separated by high ridges [55]. Interestingly, this landscape

heterogeneity was mirrored in the observed phylogenetic diversity for these regions. The rela-

tively homogenous and level landscape of Moramanga was dominated by a single subgroup,

q (Figs 2, 3, 4 and 5C). Similarly, the relatively flat landscape of district Mandoto within the

Betafo region was also dominated by a single subgroup, j (Figs 2, 3, 4 and 5A). In contrast, the

more heterogeneous landscape of the rest of the Betafo region, characterized by much greater

variation in elevation, contained much more phylogenetic diversity, with at least four distinct

subgroups (h, t, v, and w) identified in close proximity (Figs 2, 3, 4 and 6). This suggests that

landscape plays a role in maintaining the multiple geographically and phylogenetically distinct
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subpopulations of Y. pestis identified in Madagascar, likely by limiting the potential for dis-

persal of the black rat and its fleas. Indeed, population genetics studies of the black rat in

Madagascar are consistent with this hypothesis, with rat populations from landscapes charac-

terized by greater topographical relief showing greater genetic structure than rat populations

from flatter areas [55].

There is strong evidence that Y. pestis population sizes vary through time. Population

expansions and contractions related to the alternating epizootic and enzootic cycles that

characterize Y. pestis are likely the basis of the highly variable molecular clock rate observed

across the worldwide Y. pestis phylogeny [3]. In Madagascar, the high and low plague seasons

are associated with similar Y. pestis population expansions and contractions, as indicated by

higher levels of both Y. pestis seroprevalence in rats [48] and numbers of human cases [50,

51] during the high plague season compared to the low season. A phylotemporal analysis of

the Mahajanga outbreaks of the 1990s provided additional evidence, revealing a striking pat-

tern of diversity generation and loss during and after each seasonal plague outbreak, consis-

tent with seasonal population expansions and inter-seasonal population contractions [18]. In

addition to these seasonal variations in Y. pestis population size, our analysis suggests that

there is also likely variation in the magnitude of a population expansion during a given epi-

zootic cycle in Madagascar, and that this variation is not consistent among the different Y.

pestis subpopulations maintained in Madagascar. Specifically, we observed variation in sam-

pling frequency from year to year for the subgroups found predominantly within the well-

sampled Betafo and Moramanga regions. Assuming that the identified samples were repre-

sentative of the underlying populations of these subgroups, this suggests that the magnitude

of a seasonal Y. pestis population expansion varies from year to year. We also observed that

the high and low sampling years observed for each subgroup were not consistent among sub-

groups. Together, these observations suggest that local, underlying ecological factors may

affect the magnitude of seasonal population expansions of individual subgroups from year to

year and, consequently, whether or not a subgroup was sampled in a given year. Many such

potential ecological factors have been identified in Madagascar. Variation in elevation and

associated temperature fluctuations are strongly associated with shifts in human plague sea-

sonality and are thought to affect development of the flea vector and the efficiency of flea

blockage by Y. pestis [8, 51]. Rat reproductive and migration patterns are influenced by simi-

lar seasonal climatic changes and related resource availability, particularly with regards to

agricultural crops [48]. Local changes in these or other factors likely affect the population

dynamics of the various Y. pestis subgroups established in Madagascar, which, in turn, likely

affect the likelihood of observing human cases in a particular fokontany during a particular

year.

Persistent endemic cycles of Y. pestis transmission within local areas of Madagascar result

in strong, consistent spatial structuring that persists through time. Landscape likely influ-

ences local diversity of Y. pestis, with increased topographical relief associated with

increased levels of localized differentiation, and the maintenance of multiple phylogeneti-

cally distinct subpopulations even within relatively short geographic distances. Dispersal

events rarely appear to result in the establishment of a transferred genotype in a new loca-

tion, possibly due to the presence of an existing locally cycling and established genotype.

Local ecological factors in the geographic ranges occupied by individual Y. pestis subpopula-

tions likely affect the dynamics of individual subpopulations, and the associated likelihood

of observing human plague cases in a given year in a particular fokontany. Altogether, the

ecology and epidemiology of Y. pestis in Madagascar are highly dynamic, affected by a vari-

ety of factors.
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Supporting information

S1 Fig. Map of Madagascar. The 32 districts (shaded and numbered 1–32) where Yersinia pes-
tis samples analyzed in this study were collected are indicated. The core districts included in

the heavily sampled Betafo and Moramanga regions are shaded yellow and purple, respec-

tively. The neighboring districts where additional samples belonging to the subgroups domi-

nating the core districts were identified are indicated by yellow and purple striped shading for

the Betafo and Moramanga regions, respectively.

(TIF)

S2 Fig. Sample selection for whole genome sequencing. MLVA phylogenies of 458 and 315

Group I (A) and Group II (B), respectively, Malagasy Y. pestis samples used to select candidates

for whole genome sequencing. The MLVA phylogenies consist of neighbor-joining dendro-

grams constructed in MEGA6 [35] using mean character based distance matrices. Each

MLVA clade corresponding to an identified subgroup is collapsed, colored according to Fig 1,

and labeled. Labels include the SNP defined lineage or basal node, the corresponding MLVA

subgroup, and the number of samples from that clade selected for whole genome sequencing.

An “�” marks the MLVA clades that were tentatively identified as potential new subgroups and

later confirmed through whole genome sequencing and SNP analysis.

(EPS)

S3 Fig. Detection of a temporal signal. (A) Table showing each taxon name (tip), the date of

isolation, and distance of each tip from the root (CO92). (B) Linear regression to determine

how correlated root to tip distance is with date of isolation. (C) Random distribution of 10,000

permutations, where root to tip distances were shuffled each time, and corresponding correla-

tion coefficients are plotted along the x-axis (blue). The observed correlation coefficient (sqrt

of 0.278 from B) is plotted in yellow. The observed value is greater than 99% of all random val-

ues (i.e. better than expected by random chance alone).

(PDF)

S1 Table. Samples in this study.

(XLSX)

S2 Table. SNPs analyzed in this study.

(XLSX)

S3 Table. Primers used in SNP amplicon sequencing.

(XLSX)
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