J. Alvar, I. Vélez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS ONE, vol.83, issue.30, pp.35671-22693548, 2012.
DOI : 10.1371/journal.pone.0035671.s101

C. Karimkhani, V. Wanga, L. Coffeng, P. Naghavi, R. Dellavalle et al., Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013, The Lancet Infectious Diseases, vol.16, issue.5, pp.584-591, 2016.
DOI : 10.1016/S1473-3099(16)00003-7

P. Desjeux and . Leishmaniasis, Focus: Leishmaniasis, Nature Reviews Microbiology, vol.17, issue.9, pp.692-15378809, 2004.
DOI : 10.1136/bmj.326.7385.377

URL : https://hal.archives-ouvertes.fr/hal-01259055

B. A. Bastien, P. Pomares, C. Arevalo, J. Fisa, R. Hide et al., Clinical pleiomorphism in human leishmaniases , with special mention of asymptomatic infection, Clin Microbiol Infect, vol.17, pp.1451-1461, 2011.

. Sassi-a, H. Louzir, S. A. Ben, M. Mokni, O. A. Ben et al., Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia, Clinical and Experimental Immunology, vol.62, issue.1, pp.127-132, 1999.
DOI : 10.1172/JCI116570

F. Andrade-narvaez, E. Loría-cervera, E. Sosa-bibiano, and N. Van-wynsberghe, Asymptomatic infection with American cutaneous leishmaniasis: epidemiological and immunological studies, Mem??rias do Instituto Oswaldo Cruz, vol.18, issue.7, pp.599-604, 2016.
DOI : 10.1111/j.1469-0691.2011.03674.x

URL : http://www.scielo.br/pdf/mioc/v111n10/0074-0276-mioc-111-10-0599.pdf

L. Oliveira, A. Schubach, M. Martins, S. Passos, R. V. Oliveira et al., Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World, Acta Tropica, vol.118, issue.2, pp.87-96, 2011.
DOI : 10.1016/j.actatropica.2011.02.007

C. Teixeira, R. Gomes, C. N. Reynoso, D. Jochim, R. Oliveira et al., Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America, PLoS Neglected Tropical Diseases, vol.10, issue.3, pp.638-20351786, 2010.
DOI : 10.1371/journal.pntd.0000638.t001

A. Souza, B. Andrade, D. Aquino, P. Entringer, J. Miranda et al., Using Recombinant Proteins from Lutzomyia longipalpis Saliva to Estimate Human Vector Exposure in Visceral Leishmaniasis Endemic Areas, PLoS Neglected Tropical Diseases, vol.32, issue.1, pp.649-20351785, 2010.
DOI : 10.1371/journal.pntd.0000649.s002

URL : http://doi.org/10.1371/journal.pntd.0000649

B. Andrade and C. Teixeira, Biomarkers for Exposure to Sand Flies Bites as Tools to Aid Control of Leishmaniasis, Frontiers in Immunology, vol.3, pp.121-22661974, 2012.
DOI : 10.3389/fimmu.2012.00121

T. De-moura, F. Oliveira, F. Novais, J. Miranda, J. Clarêncio et al., Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva, PLoS Neglected Tropical Diseases, vol.14, issue.1, pp.84-18060088, 2007.
DOI : 10.1371/journal.pntd.0000084.g008

M. Abdeladhim, B. Ahmed, M. Marzouki, S. , B. Hmida et al., Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes, PLoS Neglected Tropical Diseases, vol.184, issue.10, pp.1345-21991402, 2011.
DOI : 10.1371/journal.pntd.0001345.s001

URL : https://hal.archives-ouvertes.fr/pasteur-00734414

J. Sokal, Measurement of Delayed Skin-Test Responses, New England Journal of Medicine, vol.293, issue.10, pp.501-503, 1975.
DOI : 10.1056/NEJM197509042931013

K. Weigle, L. Valderrama, A. Arias, C. Santrich, and N. Saravia, Leishmanin Skin Test Standardization and Evaluation of Safety, Dose, Storage, Longevity of Reaction and Sensitization, The American Journal of Tropical Medicine and Hygiene, vol.44, issue.3, pp.260-271, 1991.
DOI : 10.4269/ajtmh.1991.44.260

R. Alvarado, C. Enk, K. Jaber, L. Schnur, and S. Frankenburg, Delayed-type hypersensitivity and lymphocyte proliferation in response to Leishmania major infection in a group of children in Jericho, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.83, issue.2, pp.189-92
DOI : 10.1016/0035-9203(89)90637-8

M. Castés, J. Blackwell, D. Trujillo, S. Formica, M. Cabrera et al., Immune response in healthy volunteers vaccinated with killed leishmanial promastigotes plus BCG. I: Skin-test reactivity, T-cell proliferation and interferon-?? production, Vaccine, vol.12, issue.11, pp.1041-51, 1994.
DOI : 10.1016/0264-410X(94)90342-5

E. Khalil, E. Hassan, A. Zijlstra, E. Mukhtar, M. Ghalib et al., Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan, The Lancet, vol.356, issue.9241, pp.1565-1574, 2000.
DOI : 10.1016/S0140-6736(00)03128-7

R. Armijos, M. Weigel, M. Calvopina, A. Hidalgo, W. Cevallos et al., Safety, immunogenecity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis, Vaccine, vol.22, issue.9-10, pp.1320-1326, 2004.
DOI : 10.1016/j.vaccine.2003.06.002

K. Weigle, C. Santrich, F. Martinez, L. Valderrama, and N. Saravia, Epidemiology of Cutaneous Leishmaniasis in Colombia: Environmental and Behavioral Risk Factors for Infection, Clinical Manifestations, and Pathogenicity, Journal of Infectious Diseases, vol.168, issue.3, pp.709-723, 1993.
DOI : 10.1093/infdis/168.3.709

B. Traoré, F. Oliveira, F. O. Dicko, A. Coulibaly, C. Sissoko et al., Prevalence of Cutaneous Leishmaniasis in Districts of High and Low Endemicity in Mali, PLoS Negl Trop Dis, vol.10, pp.5141-27898671, 2016.

F. Oliveira, S. Doumbia, J. Anderson, O. Faye, S. Diarra et al., Discrepant Prevalence and Incidence of Leishmania Infection between Two Neighboring Villages in Central Mali Based on Leishmanin Skin Test Surveys, PLoS Neglected Tropical Diseases, vol.7, issue.12, p.565, 2009.
DOI : 10.1371/journal.pntd.0000565.s001

L. Moral, E. Rubio, and M. Moya, A leishmanin skin test survey in the human population of l'Alacant?? Region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.96, issue.2, pp.129-161
DOI : 10.1016/S0035-9203(02)90278-6

F. Gazos-lopes, R. Mesquita, L. Silva-cardoso, R. Senna, A. Silveira et al., Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands, PLoS ONE, vol.7, issue.10, pp.47285-23077586, 2012.
DOI : 10.1371/journal.pone.0047285.t001

URL : https://doi.org/10.1371/journal.pone.0047285

N. Geraci, R. Mukbel, M. Kemp, M. Wadsworth, E. Lesho et al., Profiling of Human Acquired Immunity Against the Salivary Proteins of Phlebotomus papatasi Reveals Clusters of Differential Immunoreactivity, The American Journal of Tropical Medicine and Hygiene, vol.90, issue.5, pp.923-961, 2014.
DOI : 10.4269/ajtmh.13-0130

C. A. Cristal, J. , M. A. Carvalho, L. Gomes, R. Miranda et al., Interleukin 10-Domi- nant Immune Response and Increased Risk of Cutaneous Leishmaniasis After Natural Exposure to Lutzomyia intermedia Sand Flies, J Infect Dis, vol.19, p.25596303, 2015.

J. Ribeiro, O. Katz, L. Pannell, J. Waitumbi, and A. Warburg, Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5'-AMP, J Exp Biol, vol.202, pp.1551-1560, 1999.

O. Katz, J. Waitumbi, R. Zer, and A. Warburg, Adenosine, AMP, and protein phosphatase activity in sandfly saliva., The American Journal of Tropical Medicine and Hygiene, vol.62, issue.1, pp.145-50, 2000.
DOI : 10.4269/ajtmh.2000.62.145

URL : http://www.ajtmh.org/deliver/fulltext/14761645/62/1/10761741.pdf?itemId=/content/journals/10.4269/ajtmh.2000.62.145&mimeType=pdf&containerItemId=content/journals/14761645

G. Haskó, D. Kuhel, J. Chen, M. Schwarzschild, E. Deitch et al., Adenosine inhibits IL-12 and TNF-alpha production via adenosine A2a receptor-dependent and independent mechanisms, The FASEB Journal, vol.14, issue.13
DOI : 10.1096/fj.99-0508com

P. Volf, P. Tesarová, and E. Nohy´nkovanohy´nkova, Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age, Medical and Veterinary Entomology, vol.345, issue.3, pp.251-257, 2000.
DOI : 10.1098/rstb.1994.0097

M. Abdeladhim, S. Kamhawi, and J. Valenzuela, What???s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity, Infection, Genetics and Evolution, vol.28, pp.691-703, 2014.
DOI : 10.1016/j.meegid.2014.07.028

T. Lestinova, I. Rohousova, M. Sima, D. Oliveira, C. Volf et al., Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania, PLOS Neglected Tropical Diseases, vol.2013, issue.9, p.28704370
DOI : 10.1371/journal.pntd.0005600.t003

URL : https://doi.org/10.1371/journal.pntd.0005600

E. Lerner, C. Shoemaker, and . Maxadilan, Cloning and functional expression of the gene encoding this potent vasodilator peptide, J Biol Chem. Available, vol.267, pp.1062-1068, 1992.

C. Wilke, S. Wei, L. Wang, I. Kryczek, J. Kao et al., Dual biological effects of the cytokines interleukin-10 and interferon-??, Cancer Immunology, Immunotherapy, vol.160, issue.7, pp.1529-1570, 2011.
DOI : 10.1002/ijc.25350

I. Rohou?ová, J. Hostomská, M. Vlková, T. Kobets, M. Lipoldová et al., The protective effect against Leishmania infection conferred by sand fly bites is limited to short-term exposure, International Journal for Parasitology, vol.41, issue.5, pp.481-486, 2011.
DOI : 10.1016/j.ijpara.2011.01.003

R. Gomes, K. Cavalcanti, C. Teixeira, A. Carvalho, P. Mattos et al., Immunity to Lutzomyia whitmani Saliva Protects against Experimental Leishmania braziliensis Infection, PLOS Neglected Tropical Diseases, vol.8, issue.11, pp.5078-27812113, 2016.
DOI : 10.1371/journal.pntd.0005078.s001

URL : https://doi.org/10.1371/journal.pntd.0005078

M. Sima, M. Novotny, L. Pravda, P. Sumova, I. Rohousova et al., The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae). Traub-Csekö YM, editor, PLoS One, vol.11, p.27812196, 2016.

A. Barral, E. Honda, A. Caldas, J. Costa, V. Vinhas et al., Human immune response to sand fly salivary gland antigens: a useful epidemiological marker?, The American Journal of Tropical Medicine and Hygiene, vol.62, issue.6, pp.740-745, 2000.
DOI : 10.4269/ajtmh.2000.62.740

URL : http://www.ajtmh.org/deliver/fulltext/14761645/62/6/11304066.pdf?itemId=/content/journals/10.4269/ajtmh.2000.62.740&mimeType=pdf&containerItemId=content/journals/14761645

B. Ahmed, S. Kaabi, B. Chelbi, I. Cherni, S. Derbali et al., Colonization of Phlebotomus papatasi changes the effect of pre-immunization with saliva from lack of protection towards protection against experimental challenge with Leishmania major and saliva, Parasites & Vectors, vol.4, issue.1, pp.126-21726438, 2011.
DOI : 10.1371/journal.pntd.0000226

URL : https://hal.archives-ouvertes.fr/pasteur-00620944

X. Xu, F. Oliveira, B. Chang, C. N. Gomes, R. Teixeira et al., Infection, Journal of Biological Chemistry, vol.7, issue.37, pp.32383-93, 2011.
DOI : 10.1016/S0092-8674(04)00172-2

URL : https://hal.archives-ouvertes.fr/pasteur-01179295

D. Aquino, A. Caldas, J. Miranda, A. Silva, M. Barral-netto et al., Epidemiological Study of the Association between Anti-Lutzomyia longipalpis Saliva Antibodies and Development of Delayed-Type Hypersensitivity to Leishmania Antigen, The American Journal of Tropical Medicine and Hygiene, vol.83, issue.4, pp.825-832, 2010.
DOI : 10.4269/ajtmh.2010.10-0182