D. R. Benson and W. Silvester, Biology of Frankia strains, actinomycete symbionts of actinorhizal plants, Microbiol Rev, vol.57, pp.293-319, 1993.

A. Sen, Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders 'Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov., INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.181, issue.17, pp.3821-3832, 2014.
DOI : 10.1038/nature08656

URL : https://hal.archives-ouvertes.fr/hal-01182770

I. Nouioui, Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov, Int J Syst Evol Microbiol, vol.66, pp.5201-5210, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01604995

P. Normand, Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography, Genome Research, vol.17, issue.1, pp.7-155798407, 2007.
DOI : 10.1101/gr.5798407

URL : https://hal.archives-ouvertes.fr/halsde-00140365

J. E. Mastronunzio, Y. Huang, and D. R. Benson, Diminished Exoproteome of Frankia spp. in Culture and Symbiosis, Applied and Environmental Microbiology, vol.75, issue.21, pp.6721-672801559, 2009.
DOI : 10.1128/AEM.01559-09

P. H. Lebre, P. De-maayer, and D. A. Cowan, Xerotolerant bacteria: surviving through a dry spell, Nature Reviews Microbiology, vol.1399, issue.5, pp.285-29616, 2017.
DOI : 10.1007/978-1-4939-3369-3_13

M. L. Kakumanu, C. L. Cantrell, and M. A. Williams, Microbial community response to varying magnitudes of desiccation in soil: A test of the osmolyte accumulation hypothesis, Soil Biology and Biochemistry, vol.57, pp.644-653, 2013.
DOI : 10.1016/j.soilbio.2012.08.014

S. H. Burleigh and J. Dawson, Desiccation tolerance and trehalose production in Frankia hyphae, Soil Biology and Biochemistry, vol.26, issue.5, pp.593-598, 1994.
DOI : 10.1016/0038-0717(94)90247-X

R. K. Selvakesavan, Intraspecies variation in sodium partitioning, potassium and proline accumulation under salt stress in Casuarina equisetifolia Forst, Symbiosis, vol.98, issue.3, pp.117-127, 2016.
DOI : 10.1073/pnas.231476498

A. Srivastava, A. Singh, S. S. Singh, and A. K. Mishra, strains, Journal of Environmental Science and Health, Part A, vol.52, issue.5, pp.420-4281270672, 2017.
DOI : 10.1007/s13213-013-0775-x

R. Oshone, Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees, BMC Genomics, vol.285, issue.1, pp.12864-12881, 2017.
DOI : 10.1074/jbc.M110.119263

J. O. Dawson and A. H. Gibson, Sensitivity of selected Frankia isolates from Casuarina, Allocasuarina and North American host plants to sodium chloride, Physiologia Plantarum, vol.61, issue.2, pp.272-278, 1987.
DOI : 10.1007/BF02277841

R. Oshone, S. R. Mansour, and L. S. Tisa, Effect of salt stress on the physiology of Frankia sp strain CcI6, Journal of Biosciences, vol.173, issue.4, pp.699-702, 2013.
DOI : 10.1016/B978-0-12-633210-0.50023-X

H. Sghaier, Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes, The ISME Journal, vol.29, issue.1, pp.21-29, 2016.
DOI : 10.1186/gb-2009-10-6-r70

URL : https://hal.archives-ouvertes.fr/hal-01601920

T. Umezawa, K. Mizuno, and T. Fujimura, Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP, Plant, Cell and Environment, vol.23, issue.12, pp.1617-1625, 2002.
DOI : 10.1016/S1360-1385(00)01838-0

L. Rajeev, Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust, The ISME Journal, vol.58, issue.11, pp.2178-2191, 2013.
DOI : 10.1111/j.1462-2920.2007.01522.x

F. Mohammadipanah and J. Wink, Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity, Frontiers in Microbiology, vol.42, issue.698, 1541.
DOI : 10.1134/S1064229309050081

URL : https://doi.org/10.3389/fmicb.2015.01541

J. C. Leblanc, E. R. Gonçalves, and W. W. Mohn, Global Response to Desiccation Stress in the Soil Actinomycete Rhodococcus jostii RHA1, Applied and Environmental Microbiology, vol.74, issue.9, pp.2627-263602711, 2008.
DOI : 10.1128/AEM.02711-07

J. K. Fredrickson, Protein oxidation: key to bacterial desiccation resistance?, The ISME Journal, vol.38, issue.4, pp.393-403, 2008.
DOI : 10.1534/genetics.104.029249

URL : http://www.nature.com/ismej/journal/v2/n4/pdf/ismej2007116a.pdf

H. J. Mcintyre, Trehalose Biosynthesis in Rhizobium leguminosarum bv. trifolii and Its Role in Desiccation Tolerance, Applied and Environmental Microbiology, vol.73, issue.12, pp.3984-399200412, 2007.
DOI : 10.1128/AEM.00412-07

E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le-rudulier, Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection, Appl Environ Microbiol, vol.65, pp.2072-2077, 1999.

D. Philippis, R. Vincenzini, and M. , Exocellular polysaccharides from cyanobacteria and their possible applications, FEMS Microbiology Reviews, vol.22, issue.3, pp.151-175, 1998.
DOI : 10.1089/aid.1996.12.1463

M. Tanaka, Analysis of Deinococcus radiodurans's Transcriptional Response to Ionizing Radiation and Desiccation Reveals Novel Proteins That Contribute to Extreme Radioresistance, Genetics, vol.168, issue.1, pp.21-33, 2004.
DOI : 10.1534/genetics.104.029249

E. J. Cytryn, Transcriptional and Physiological Responses of Bradyrhizobium japonicum to Desiccation-Induced Stress, Journal of Bacteriology, vol.189, issue.19, pp.6751-676200533, 2007.
DOI : 10.1128/JB.00533-07

J. M. Jeon, H. I. Lee, M. J. Sadowsky, M. Sugawara, and W. Chang, Characterization of a Functional Role of the Bradyrhizobium japonicum Isocitrate Lyase in Desiccation Tolerance, International Journal of Molecular Sciences, vol.125, issue.12, pp.16695-16709, 2015.
DOI : 10.1042/bj1251075

M. Potts, S. M. Slaughter, F. U. Hunneke, J. F. Garst, and R. F. Helm, Desiccation Tolerance of Prokaryotes: Application of Principles to Human Cells, Integrative and Comparative Biology, vol.45, issue.5, pp.800-809, 2005.
DOI : 10.1093/icb/45.5.800

O. Leprince and J. Buitink, Desiccation tolerance: From genomics to the field, Plant Science, vol.179, issue.6, pp.554-564011, 2010.
DOI : 10.1016/j.plantsci.2010.02.011

URL : https://hal.archives-ouvertes.fr/hal-00729694

J. A. Christie-oleza, B. Fernandez, B. Nogales, R. Bosch, and J. Armengaud, Proteomic insights into the lifestyle of an environmentally relevant marine bacterium, The ISME Journal, vol.6, issue.1, pp.124-13586, 2011.
DOI : 10.1002/pmic.200900120

C. Rubiano-labrador, Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring, Journal of Proteomics, vol.97, pp.36-47, 2014.
DOI : 10.1016/j.jprot.2013.05.020

D. Szklarczyk, The STRING database in 2017: quality-controlled protein???protein association networks, made broadly accessible, Nucleic Acids Research, vol.3, issue.Suppl. 1, pp.362-368, 2017.
DOI : 10.1126/scisignal.2005769

W. Walter, F. Sanchez-cabo, and M. Ricote, GOplot: an R package for visually combining expression data with functional analysis: Fig. 1., Bioinformatics, vol.31, issue.17, pp.2912-2914, 2015.
DOI : 10.1186/1471-2105-14-244

URL : https://academic.oup.com/bioinformatics/article-pdf/31/17/2912/448290/btv300.pdf

S. Bienert, The SWISS-MODEL Repository???new features and functionality, Nucleic Acids Research, vol.84, issue.D1, pp.313-319, 2017.
DOI : 10.1016/j.str.2015.05.013

URL : https://academic.oup.com/nar/article-pdf/45/D1/D313/8846950/gkw1132.pdf

J. Ha?ek, Poly(ethylene glycol) interactions with proteins, Zeitschriftfür Kristall, vol.23, pp.613-618, 2006.
DOI : 10.1524/9783486992526-101

J. Wu, Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution, Journal of Materials Chemistry B, vol.93, issue.20, pp.2983-2992, 2014.
DOI : 10.1016/j.biochi.2010.10.013

D. B. Knowles, Chemical Interactions of Polyethylene Glycols (PEGs) and Glycerol with Protein Functional Groups: Applications to Effects of PEG and Glycerol on Protein Processes, Biochemistry, vol.54, issue.22, pp.3528-3542, 2015.
DOI : 10.1021/acs.biochem.5b00246

K. Lim and J. Herron, In Poly(Ethylene Glycol) chemistry: biotechnical and biomedical applications, pp.29-56, 1992.

E. Perozo, D. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac, Open channel structure of MscL and the gating mechanism ofmechanosensitive channels, Nature, vol.11, issue.6901, pp.942-948, 2002.
DOI : 10.1002/prot.340110407

C. Prudhomme, Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment, Proceedings of the National Academy of Sciences, vol.111, issue.9, pp.3262-32671222473110, 2014.
DOI : 10.1175/JHM450.1

P. M. Jones and A. M. George, The ABC transporter structure and mechanism: perspectives on recent research, Cellular and Molecular Life Sciences (CMLS), vol.61, issue.6, pp.682-699, 2004.
DOI : 10.1007/s00018-003-3336-9

E. Martinoia, Multifunctionality of plant ABC transporters ??? more than just detoxifiers, Planta, vol.214, issue.3, pp.345-355, 2002.
DOI : 10.1007/s004250100661

D. Zhong and P. Blount, MscL, Biochemistry, vol.52, issue.32, pp.5415-5420, 2013.
DOI : 10.1021/bi400790j

S. Sukharev, P. Blount, B. Martinac, and C. Kung, :The MscL Gene, Protein, and Activities, Annual Review of Physiology, vol.59, issue.1, pp.633-657, 1997.
DOI : 10.1146/annurev.physiol.59.1.633

O. Hamill and B. Martinac, Molecular Basis of Mechanotransduction in Living Cells, Physiological Reviews, vol.89, issue.2, pp.685-740, 2001.
DOI : 10.1016/0014-5793(93)80671-G

C. Häse, L. Dain, A. Martinac, and B. , Molecular dissection of the large mechanosensitive ion channel (MscL) of E. coli: Mutants with altered channel gating and pressure sensitivity, The Journal of Membrane Biology, vol.253, issue.1, pp.17-25, 1997.
DOI : 10.1126/science.1716786

G. Gautam, S. Rehman, P. Pandey, and S. Gourinath, reveals its mode of ligand recognition, Acta Crystallographica Section D Structural Biology, vol.428, issue.8, pp.672-682, 2017.
DOI : 10.1107/S2059798317009639

S. T. Lim, J. L. Jane, S. Rajagopalan, and P. A. Seib, Effect of starch granule size on physical properties of starch-filled polyethylene film, Biotechnology Progress, vol.8, issue.1, pp.51-57, 1992.
DOI : 10.1021/bp00013a008

J. Ha?ek, Poly(ethylene glycol) interactions with proteins, Z. Kristallogr, vol.23, pp.613-618, 2006.
DOI : 10.1524/9783486992526-101

J. Wu, Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution, Journal of Materials Chemistry B, vol.93, issue.20, pp.2983-2992, 2014.
DOI : 10.1016/j.biochi.2010.10.013

D. B. Knowles, Chemical Interactions of Polyethylene Glycols (PEGs) and Glycerol with Protein Functional Groups: Applications to Effects of PEG and Glycerol on Protein Processes, Biochemistry, vol.54, issue.22, pp.3528-3542, 2015.
DOI : 10.1021/acs.biochem.5b00246

E. Haswell, R. Phillips, and D. Rees, Mechanosensitive Channels: What Can They Do and How Do They Do It?, Structure, vol.19, issue.10, pp.1356-1369, 2011.
DOI : 10.1016/j.str.2011.09.005

URL : https://doi.org/10.1016/j.str.2011.09.005

T. R. Sampson and D. S. Weiss, CRISPR-Cas systems: new players in gene regulation and bacterial physiology, Frontiers in Cellular and Infection Microbiology, vol.191, issue.37, p.37, 2014.
DOI : 10.1128/JB.00797-08

URL : http://journal.frontiersin.org/article/10.3389/fcimb.2014.00037/pdf

B. Sagot, Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria, Proceedings of the National Academy of Sciences, vol.107, issue.28, pp.12652-126571003063107, 2010.
DOI : 10.1006/mben.2001.0208

J. M. Brooks and D. R. Benson, Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration, Symbiosis, vol.586, issue.Suppl, pp.87-96, 2016.
DOI : 10.1016/j.febslet.2012.06.046

D. Frees, K. Savijoki, P. Varmanen, and H. Ingmer, Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria, Molecular Microbiology, vol.146, issue.5, pp.1285-1295, 2007.
DOI : 10.1128/JB.186.7.1911-1918.2004

L. Contreras-porcia, D. Thomas, V. Flores, and J. A. Correa, Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta), Journal of Experimental Botany, vol.37, issue.5, pp.1815-1829, 2011.
DOI : 10.1017/S0967026202003876

N. Smirnoff and Q. J. Cumbes, Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry, vol.28, issue.4, pp.1057-10600031, 1989.
DOI : 10.1016/0031-9422(89)80182-7

H. Sghaier, H. Mitomo, and I. Narumi, Genomic confession of Deinococcus radiodurans: it started out as a radiation-resistant organism, Viva Origino, vol.33, pp.243-257, 2005.

H. Sghaier, I. Narumi, K. Satoh, H. Ohba, and H. Mitomo, Problems with the current deinococcal hypothesis: an alternative theory, Theory in Biosciences, vol.443, issue.1, pp.43-45, 2007.
DOI : 10.1007/s12064-007-0004-x

H. Katoh, Desiccation-inducible genes are related to N2-fixing system under desiccation in a terrestrial cyanobacterium, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.8, pp.1263-1269029, 2012.
DOI : 10.1016/j.bbabio.2012.03.029

J. Yang, J. W. Kloepper, and C. M. Ryu, Rhizosphere bacteria help plants tolerate abiotic stress, Trends in Plant Science, vol.14, issue.1, pp.1-4, 2009.
DOI : 10.1016/j.tplants.2008.10.004

H. Cherif, Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought, Environmental Microbiology Reports, vol.89, issue.4, pp.668-678, 2015.
DOI : 10.1111/1574-6941.12308

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/566005/1/10.11111758-2229.12304+Env+Microbiol+Rep.pdf

E. Rolli, Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait, Environmental Microbiology, vol.52, issue.2, pp.316-331, 2015.
DOI : 10.1007/s00374-012-0707-0

L. Carro, Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia, The ISME Journal, vol.35, issue.8, pp.1723-1733257, 2015.
DOI : 10.1042/bj0350845

URL : https://hal.archives-ouvertes.fr/hal-01436175

E. M. Vanderlinde, 3841, FEMS Microbiology Ecology, vol.71, issue.3, pp.327-340, 2010.
DOI : 10.1111/j.1574-6941.2009.00824.x

D. Balleza, F. Gomez-lagunas, and C. Quinto, Cloning and Functional Expression of an MscL Ortholog from Rhizobium etli: Characterization of a Mechanosensitive Channel, Journal of Membrane Biology, vol.28, issue.1, pp.13-27, 2010.
DOI : 10.1042/bj1880131

K. Gouffi, N. Pica, V. Pichereau, and C. Blanco, Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti, Appl Environ Microbiol, vol.65, pp.1491-1500, 1999.

P. Normand and M. Lalonde, species, Canadian Journal of Microbiology, vol.28, issue.10, pp.1133-1142, 1982.
DOI : 10.1139/m82-168

URL : https://hal.archives-ouvertes.fr/hal-01455595

L. Carro, Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a, Microbiology, vol.88, issue.7, pp.1173-1184, 2016.
DOI : 10.2183/pjab.88.152

URL : https://hal.archives-ouvertes.fr/hal-01606507

E. M. Hartmann, F. Allain, J. C. Gaillard, O. Pible, and J. Armengaud, Taking the Shortcut for High-Throughput Shotgun Proteomic Analysis of Bacteria, Meth Molec Biol, vol.1197, pp.275-285978, 2014.
DOI : 10.1007/978-1-4939-1261-2_16

G. Clair, J. Armengaud, and C. Duport, Restricting Fermentative Potential by Proteome Remodeling, Molecular & Cellular Proteomics, vol.7, issue.6, 2012.
DOI : 10.1186/1472-6882-11-8

URL : https://hal.archives-ouvertes.fr/hal-01329485

G. Klein, RNA-binding proteins are a major target of silica nanoparticles in cell extracts, Nanotoxicology, vol.8, issue.10, pp.1555-1564, 2016.
DOI : 10.1006/jcis.1997.4895

URL : https://hal.archives-ouvertes.fr/cea-01381283

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-41010, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. Koonin, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Research, vol.28, issue.1, pp.33-36, 2000.
DOI : 10.1093/nar/28.1.33

P. Shannon, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-25041239303, 2003.
DOI : 10.1101/gr.1239303

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

S. C. Lovell, Structure validation by C?? geometry: ??,?? and C?? deviation, Proteins: Structure, Function, and Bioinformatics, vol.320, issue.3, pp.437-450, 2003.
DOI : 10.1016/S0022-2836(02)00564-8

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, pp.455-46121334, 2010.
DOI : 10.1002/jcc.21334

P. W. Rose, The RCSB protein data bank: integrative view of protein, gene and 3D structural information, Nucl Acids Res, vol.45, pp.271-281, 2017.

O. Boyle and N. M. , Open Babel: an open chemical toolbox, J Cheminform, vol.3, issue.33, pp.1758-2946, 2011.

E. Harigua-souiai, Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis, BMC Bioinformatics, vol.5, issue.12, 2015.
DOI : 10.1016/0022-2836(82)90153-X

URL : https://hal.archives-ouvertes.fr/pasteur-01144936

L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.8.2, 2015.