G. Semenza, Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current opinion in genetics & development, Epub, vol.810, issue.5, pp.588-9431, 1998.

G. Semenza, Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual review of cell and developmental biology, Epub, vol.151228, pp.551-78, 1999.

O. Colegio, N. Chu, A. Szabo, T. Chu, A. Rhebergen et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature, vol.88, issue.7519, pp.559-63, 2014.
DOI : 10.1016/S0092-8674(00)81848-6

C. Corzo, T. Condamine, L. Lu, M. Cotter, J. Youn et al., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment, J Exp Med. Epub, vol.20730, issue.11, pp.2439-53, 2010.

S. Cotterell, C. Engwerda, and P. Kaye, Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected with Leishmania donovani, Infection and Immunity, vol.68, issue.4, pp.1840-1848, 2000.
DOI : 10.1128/IAI.68.4.1840-1848.2000

S. Cotterell, C. Engwerda, and P. Kaye, Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-alpha, Blood. Epub, vol.9526, issue.502, pp.1642-51, 2000.

M. Fangradt, M. Hahne, T. Gaber, C. Strehl, R. Rauch et al., Human monocytes and macrophages differ in their mechanisms of adaptation to hypoxia, Arthritis Research & Therapy, vol.14, issue.4, pp.181-3580576, 2012.
DOI : 10.1182/blood-2008-12-195941

K. Parker, D. Beury, and S. Ostrand-rosenberg, Myeloid-Derived Suppressor Cells, Epub, vol.12829, pp.95-139, 2015.
DOI : 10.1016/bs.acr.2015.04.002

D. Marvel and D. Gabrilovich, Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. The Journal of clinical investigation, pp.3356-64, 2015.

J. Van-ginderachter, A. Beschin, D. Baetselier, P. Raes, and G. , Myeloid-derived suppressor cells in parasitic infections, European Journal of Immunology, vol.58, issue.11, pp.2976-85, 2010.
DOI : 10.4049/jimmunol.172.5.3157

R. Valanparambil, M. Tam, A. Jardim, T. Geary, and M. Stevenson, Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection. Mucosal immunology, p.27072608, 2016.

W. Pereira, F. Ribeiro-gomes, L. Guillermo, N. Vellozo, F. Montalvao et al., Myeloidderived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses, J Leukoc Biol. Epub, vol.9022, issue.6, pp.1191-1198, 2011.

M. Schmid, N. Zimara, A. Wege, and U. Ritter, Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice, Eur J Immunol. Epub, vol.4422, issue.11, pp.3295-306, 2014.

P. Kaye, M. Svensson, M. Ato, A. Maroof, R. Polley et al., The immunopathology of experimental visceral leishmaniasis, Immunological Reviews, vol.146, issue.1, pp.239-53, 2004.
DOI : 10.1128/IAI.71.1.401-410.2003

A. Doedens, C. Stockmann, M. Rubinstein, D. Liao, N. Zhang et al., Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer research, pp.7465-75, 2010.

T. Abebe, A. Hailu, M. Woldeyes, W. Mekonen, K. Bilcha et al., Local Increase of Arginase Activity in Lesions of Patients with Cutaneous Leishmaniasis in Ethiopia, PLoS Neglected Tropical Diseases, vol.2, issue.6, p.3373636, 2012.
DOI : 10.1371/journal.pntd.0001684.t002

H. Mortazavi, P. Sadeghipour, Y. Taslimi, S. Habibzadeh, F. Zali et al., Comparing acute and chronic human cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica focusing on arginase activity Journal of the European Academy of Dermatology and Venereology: JEADV. 2016, p.27439742, 2016.

Z. Mou, H. Muleme, D. Liu, P. Jia, I. Okwor et al., Parasite-Derived Arginase Influences Secondary Anti-Leishmania Immunity by Regulating Programmed Cell Death-1-Mediated CD4+ T Cell Exhaustion, The Journal of Immunology, vol.190, issue.7, pp.3380-3389, 2013.
DOI : 10.4049/jimmunol.1202537

C. Chen, N. Pore, A. Behrooz, F. Ismail-beigi, and A. Maity, Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia, The Journal of biological chemistry. Epub, vol.2761230, issue.12, pp.9519-9544, 2000.

C. Werno, H. Menrad, A. Weigert, N. Dehne, S. Goerdt et al., Knockout of HIF-1?? in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses, Carcinogenesis, vol.22, issue.5, pp.1863-72, 2010.
DOI : 10.1096/fj.07-9617com

M. Kilani, K. Mohammed, N. Nasreen, R. Tepper, and A. Vb, RSV Causes HIF-1?? Stabilization via NO Release in Primary Bronchial Epithelial Cells, Inflammation, vol.27, issue.5, pp.245-51, 2004.
DOI : 10.1016/S0002-9440(10)64309-X

, HIF-1? exacerbates MDSC-like inhibitory functions during infection

V. Nizet and R. Johnson, Interdependence of hypoxic and innate immune responses, Nature Reviews Immunology, vol.105, issue.9, pp.609-626, 2009.
DOI : 10.4049/jimmunol.177.8.4962

A. Degrossoli, M. Bosetto, C. Lima, and G. S. , Expression of hypoxia-inducible factor 1alpha in mononuclear phagocytes infected with Leishmania amazonensis. Immunology letters, Epub, vol.114, issue.21107, pp.119-144, 2007.

K. Brown, E. Suvorova, A. Farrell, A. Mclain, A. Dittmar et al., Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host-and parasiteencoded kinases, PLoS Pathog, vol.1020, issue.6, p.4055737, 2014.

G. Semenza, Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in molecular medicine, pp.345-50, 2001.

H. Schor, G. Vaday, and O. Lider, Modulation of Leukocyte Behavior by an Inflamed Extracellular Matrix, Developmental Immunology, vol.7, issue.2-4, pp.227-265, 2000.
DOI : 10.1155/2000/51902

G. Wang, B. Jiang, E. Rue, and G. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension., Proceedings of the National Academy of Sciences, vol.92, issue.12, pp.5510-5514, 1995.
DOI : 10.1073/pnas.92.12.5510

P. Yurdakul, J. Dalton, L. Beattie, N. Brown, S. Erguven et al., Compartment-Specific Remodeling of Splenic Micro-Architecture during Experimental Visceral Leishmaniasis, The American Journal of Pathology, vol.179, issue.1, pp.23-32, 2011.
DOI : 10.1016/j.ajpath.2011.03.009

A. Paun, R. Bankoti, T. Joshi, P. Pitha, and S. Stager, Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection):e1001246, PLoS Pathog, vol.7, issue.1, p.3017120, 2011.

G. Bonfa, L. Benevides, S. Mdo, C. Fonseca, D. Mineo et al., CCR5 Controls Immune and Metabolic Functions during Toxoplasma gondii Infection, PLoS ONE, vol.78, issue.8, pp.104736-4132074, 2014.
DOI : 10.1371/journal.pone.0104736.t001

K. Sarkar, Z. Cai, R. Gupta, N. Parajuli, K. Fox-talbot et al., Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning, Proceedings of the National Academy of Sciences, vol.14, issue.10, pp.10504-10513, 2012.
DOI : 10.1210/me.14.10.1674