T. Schütt, L. Helboe, and L. Pedersen, Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer???s Disease: A Translational Study of Neuropathological and Inflammatory Markers, Journal of Alzheimer's Disease, vol.6, issue.Suppl., pp.433-449, 2016.
DOI : 10.2174/156720509790147179

M. Mattson, Pathways towards and away from Alzheimer's disease, Nature, vol.22, issue.7000, pp.631-639, 2004.
DOI : 10.1523/JNEUROSCI.22-02-00404.2002

C. Behl, J. Davis, and R. Lesley, Hydrogen peroxide mediates amyloid ?? protein toxicity, Cell, vol.77, issue.6, pp.817-827, 1994.
DOI : 10.1016/0092-8674(94)90131-7

C. Opazo, X. Huang, and R. Cherny, Metalloenzyme-like Activity of Alzheimer's Disease ??-Amyloid, Journal of Biological Chemistry, vol.269, issue.43, pp.40302-40308, 2002.
DOI : 10.1073/pnas.092034699

R. Lopachin, T. Gavin, and D. Petersen, Molecular Mechanisms of 4-Hydroxy-2-nonenal and Acrolein Toxicity: Nucleophilic Targets and Adduct Formation, Chemical Research in Toxicology, vol.22, issue.9, pp.1499-1508, 2009.
DOI : 10.1021/tx900147g

T. Williams, B. Lynn, and W. Markesbery, Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer's disease, Neurobiology of Aging, vol.27, issue.8, pp.1094-1099, 2006.
DOI : 10.1016/j.neurobiolaging.2005.06.004

M. Bradley, W. Markesbery, and M. Lovell, Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease, Free Radical Biology and Medicine, vol.48, issue.12, pp.1570-1576, 2010.
DOI : 10.1016/j.freeradbiomed.2010.02.016

M. Lovell, C. Xie, and W. Markesbery, Acrolein is increased in Alzheimer???s disease brain and is toxic to primary hippocampal cultures, Neurobiology of Aging, vol.22, issue.2, pp.187-194, 2001.
DOI : 10.1016/S0197-4580(00)00235-9

T. Nam, D. Arseneault, M. Zarkovic, and N. , Molecular regulations induced by acrolein in neuroblastoma SK-N-SH cell: relevance to Alzheimer's disease, J Alzheimers Dis, vol.21, pp.1196-1216, 2010.

V. Chandra, R. Pandav, and H. Dodge, Incidence of Alzheimer's disease in a rural community in India: The Indo-US Study, Neurology, vol.57, issue.6, pp.985-989, 2001.
DOI : 10.1212/WNL.57.6.985

V. Murthy, M. Ranjekar, P. Ramassamy, and C. , Scientific Basis for the Use of Indian Ayurvedic Medicinal Plants in the Treatment of Neurodegenerative Disorders: 1. Ashwagandha, Central Nervous System Agents in Medicinal Chemistry, vol.10, issue.3, pp.238-246, 2010.
DOI : 10.2174/1871524911006030238

M. Elsakka, E. Grigorescu, and U. St?nescu, New data referring to chemistry of Withania somnifera species, Rev Med Chir Soc Med Nat Iasi, vol.94, pp.385-387, 1990.

M. Mirjalili, E. Moyano, and M. Bonfill, Steroidal Lactones from Withania somnifera, an Ancient Plant for Novel Medicine, Molecules, vol.9, issue.7, pp.2373-2393, 2009.
DOI : 10.1055/s-2006-957977

T. Kuboyama, C. Tohda, and K. Komatsu, Withanoside IV and its active metabolite, sominone, attenuate A??(25-35)-induced neurodegeneration, European Journal of Neuroscience, vol.65, issue.Supplement 1, pp.1417-1426, 2006.
DOI : 10.1021/np0201117

B. Jayaprakasam, K. Padmanabhan, and M. Nair, Withanamides in Withania somnifera fruit protect PC-12 cells from ?-amyloid responsible for Alzheimer's disease, Phytother Res, vol.24, pp.859-863, 2010.

S. Kumar, C. Seal, and M. Howes, In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and ??-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells, Phytotherapy Research, vol.50, issue.6652, pp.1567-1574, 2010.
DOI : 10.1093/oxfordjournals.jbchem.a021447

URL : https://hal.archives-ouvertes.fr/hal-00599838

F. Longpré, P. Garneau, and Y. Christen, Protection by EGb 761 against ??-amyloid-induced neurotoxicity: Involvement of NF-??B, SIRT1, and MAPKs pathways and inhibition of amyloid fibril formation, Free Radical Biology and Medicine, vol.41, issue.12, pp.81-94, 2006.
DOI : 10.1016/j.freeradbiomed.2006.08.015

J. Melo, C. Sousa, and P. Garção, Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons, European Journal of Neuroscience, vol.101, issue.3, pp.455-464, 2009.
DOI : 10.1515/znc-2003-5-613

M. Singh, V. Murthy, and C. Ramassamy, Modulation of Hydrogen Peroxide and Acrolein-Induced Oxidative Stress, Mitochondrial Dysfunctions and Redox Regulated Pathways by the Bacopa Monniera Extract: Potential Implication in Alzheimer's Disease, Journal of Alzheimer's Disease, vol.21, issue.1, pp.229-247, 2010.
DOI : 10.3233/JAD-2010-091729

G. Ellman, K. Courtney, V. Andres, and . Jr, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, vol.7, issue.2, pp.88-95, 1961.
DOI : 10.1016/0006-2952(61)90145-9

URL : http://xa.yimg.com/kq/groups/15186538/1808590592/name/Anuttama+%26+Afsha%27s+Article.pdf

M. Singh and S. Rishi, Plasma acetylcholinesterase as a biomarker of triazophos neurotoxicity in young and adult rats, Environmental Toxicology and Pharmacology, vol.19, issue.3, pp.471-476, 2005.
DOI : 10.1016/j.etap.2004.12.009

P. Francis, A. Palmer, and M. Snape, The cholinergic hypothesis of Alzheimer's disease: a review of progress, Journal of Neurology, Neurosurgery & Psychiatry, vol.66, issue.2, pp.137-147, 1999.
DOI : 10.1136/jnnp.66.2.137

J. Cummings, Alzheimer's Disease, New England Journal of Medicine, vol.351, issue.1, pp.56-67, 2004.
DOI : 10.1056/NEJMra040223

URL : https://hal.archives-ouvertes.fr/hal-01579097

B. Jayaprakasam, G. Strasburg, and M. Nair, Potent lipid peroxidation inhibitors from Withania somnifera fruits, Tetrahedron, vol.60, issue.13, pp.3109-3121, 2004.
DOI : 10.1016/j.tet.2004.01.016

M. Kaileh, V. Berghe, W. Heyerick, and A. , Withaferin A Strongly Elicits I??B Kinase ?? Hyperphosphorylation Concomitant with Potent Inhibition of Its Kinase Activity, Journal of Biological Chemistry, vol.107, issue.suppl., pp.4253-4264, 2007.
DOI : 10.1074/jbc.M507213200

URL : http://www.jbc.org/content/282/7/4253.full.pdf

M. Singh, D. Nam, and M. Arseneault, Role of By-Products of Lipid Oxidation in Alzheimer's Disease Brain: A Focus on Acrolein, Journal of Alzheimer's Disease, vol.21, issue.3, pp.741-756, 2010.
DOI : 10.3233/JAD-2010-100405

M. Ansari, J. Keller, and S. Scheff, Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity, Free Radical Biology and Medicine, vol.45, issue.11, pp.1510-1519, 2008.
DOI : 10.1016/j.freeradbiomed.2008.08.025

M. Choudhary, S. Nawaz, and Z. Haq, Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties, Biochemical and Biophysical Research Communications, vol.334, issue.1, pp.276-287, 2005.
DOI : 10.1016/j.bbrc.2005.06.086

C. Tohda and E. Joyashiki, Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET, British Journal of Pharmacology, vol.50, issue.2, pp.1427-1440, 2009.
DOI : 10.1038/nn1482

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2009.00313.x/pdf

D. Patil, M. Gautam, and S. Mishra, Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract, Journal of Pharmaceutical and Biomedical Analysis, vol.80, pp.203-212, 2013.
DOI : 10.1016/j.jpba.2013.03.001

N. Sehgal, A. Gupta, and R. Valli, Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver, Proceedings of the National Academy of Sciences, vol.61, issue.2, pp.3510-3515, 2012.
DOI : 10.1016/j.brainresrev.2009.05.007

URL : http://www.pnas.org/content/109/9/3510.full.pdf

K. Dutta, P. Patel, and R. Rahimian, Withania somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration, Neurotherapeutics, vol.14, issue.2, pp.447-462, 2017.
DOI : 10.1016/j.molmed.2008.09.001

R. Wadhwa, A. Konar, and S. Kaul, Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts, Neurochemistry International, vol.95, pp.109-118, 2016.
DOI : 10.1016/j.neuint.2015.09.001