J. Espersch?-utz, F. Buegger, J. B. Winkler, J. C. Munch, M. Schloter et al., Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy, Soil Biology and Biochemistry, vol.41, issue.9, pp.1976-1985, 2009.
DOI : 10.1016/j.soilbio.2009.07.002

A. P. Gamerdinger, R. S. Achin, and R. W. Traxler, Approximating the Impact of Sorption on Biodegradation Kinetics in Soil-Water Systems, Soil Science Society of America Journal, vol.61, issue.6, pp.1618-1626, 1997.
DOI : 10.2136/sssaj1997.03615995006100060012x

Y. Gao, L. Ren, W. Ling, S. Gong, B. Sun et al., Desorption of phenanthrene and pyrene in soils by root exudates, Bioresource Technology, vol.101, issue.4, pp.1159-1165, 2010.
DOI : 10.1016/j.biortech.2009.09.062

Y. Gao, Y. Yang, W. Ling, H. Kong, and X. Zhu, Gradient Distribution of Root Exudates and Polycyclic Aromatic Hydrocarbons in Rhizosphere Soil, Soil Science Society of America Journal, vol.75, issue.5, p.1694, 2011.
DOI : 10.2136/sssaj2010.0244

S. E. Gaskin and R. H. Bentham, Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses, Science of The Total Environment, vol.408, issue.17, pp.3683-3688, 2010.
DOI : 10.1016/j.scitotenv.2010.05.004

V. Geissen, P. Gomez-rivera, E. Huerta-lwanga, R. B. Mendoza, A. T. Narc-ias et al., Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico, Ecotoxicology and Environmental Safety, vol.71, issue.3, pp.638-642, 2008.
DOI : 10.1016/j.ecoenv.2008.02.015

F. M. Ghazali, R. N. Rahman, A. B. Salleh, and M. Basri, Biodegradation of hydrocarbons in soil by microbial consortium, International Biodeterioration & Biodegradation, vol.54, issue.1, pp.61-67, 2004.
DOI : 10.1016/j.ibiod.2004.02.002

B. R. Glick, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnology Advances, vol.21, issue.5, pp.383-393, 2003.
DOI : 10.1016/S0734-9750(03)00055-7

B. R. Glick, Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase, FEMS Microbiology Letters, vol.17, issue.1, pp.1-7, 2005.
DOI : 10.1099/00221287-147-7-1815

B. R. Glick, D. Penrose, L. , and J. , A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria, Journal of Theoretical Biology, vol.190, issue.1, pp.63-68, 1998.
DOI : 10.1006/jtbi.1997.0532

N. C. Gomes, O. Fagbola, R. Costa, N. G. Rumjanek, A. Buchner et al., Dynamics of Fungal Communities in Bulk and Maize Rhizosphere Soil in the Tropics, Applied and Environmental Microbiology, vol.69, issue.7, pp.3758-3766, 2003.
DOI : 10.1128/AEM.69.7.3758-3766.2003

E. Gonzalez, N. J. Brereton, J. Marleau, W. Guidi-nissim, A. P. Pag-e et al., Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination, Microbiome, vol.353, issue.8, p.53, 2018.
DOI : 10.1126/science.aaf8287

URL : https://hal.archives-ouvertes.fr/pasteur-01855944

V. Grenier, F. E. Pitre, W. Guidi-nissim, and M. Labrecque, Genotypic differences explain most of the response of willow cultivars to petroleum-contaminated soil, Trees, vol.92, issue.7, pp.871-881, 2015.
DOI : 10.4141/cjss2011-100

M. Guo, Z. Gong, R. Miao, J. Rookes, D. Cahill et al., Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil, Soil Biology and Biochemistry, vol.113, pp.130-142, 2017.
DOI : 10.1016/j.soilbio.2017.06.006

M. Guo, Z. Gong, R. Miao, D. Su, X. Li et al., The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure, Ecological Engineering, vol.99, pp.22-30, 2017.
DOI : 10.1016/j.ecoleng.2016.11.018

J. Gurska, W. Wang, K. E. Gerhardt, A. M. Khalid, D. M. Isherwood et al., Three Year Field Test of a Plant Growth Promoting Rhizobacteria Enhanced Phytoremediation System at a Land Farm for Treatment of Hydrocarbon Waste, Environmental Science & Technology, vol.43, issue.12, pp.4472-4479, 2009.
DOI : 10.1021/es801540h

F. J. Guti-errez-ma~-nero, B. Ramos-solano, A. Probanza, J. Mehouachi, F. R. Tadeo et al., The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins, Physiologia Plantarum, vol.65, issue.2, pp.206-211, 2001.
DOI : 10.1007/BF02376799

F. Z. Haichar, C. Marol, O. Berge, J. I. Rangel-castro, J. I. Prosser et al., Plant host habitat and root exudates shape soil bacterial community structure, The ISME Journal, vol.66, issue.12, pp.1221-1230, 2008.
DOI : 10.1007/s00248-007-9257-7

C. Hamel and C. Plenchette, Mycorrhizae in Crop Production, p.366, 2007.

S. Harayama, M. Kok, and E. L. Neidle, Functional and Evolutionary Relationships Among Diverse Oxygenases, Annual Review of Microbiology, vol.46, issue.1, pp.565-601, 1992.
DOI : 10.1146/annurev.mi.46.100192.003025

H. Harms, D. Schlosser, and L. Y. Wick, Untapped potential: exploiting fungi in bioremediation of hazardous chemicals, Nature Reviews Microbiology, vol.103, issue.3, pp.177-192, 2011.
DOI : 10.2307/3432477

A. Hartmann, M. Schmid, D. Van-tuinen, and G. Berg, Plant-driven selection of microbes, Plant and Soil, vol.101, issue.4, pp.235-257, 2009.
DOI : 10.1093/jexbot/52.suppl_1.487

S. E. Hassan, T. H. Bell, F. O. Stefani, D. Denis, M. Hijri et al., Contrasting the Community Structure of Arbuscular Mycorrhizal Fungi from Hydrocarbon-Contaminated and Uncontaminated Soils following Willow (Salix spp. L.) Planting, PLoS ONE, vol.60, issue.7, p.102838, 2014.
DOI : 10.1371/journal.pone.0102838.s002

E. Heinaru, M. Merimaa, S. Viggor, M. Lehiste, I. Leito et al., Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area, FEMS Microbiology Ecology, vol.9, issue.Spec. No, pp.363-373, 2005.
DOI : 10.1128/jb.174.3.711-724.1992

M. Hubbard, J. J. Germida, and V. Vujanovic, Fungal endophyte colonization coincides with altered DNA methylation in drought-stressed wheat seedlings, Canadian Journal of Plant Science, vol.100, issue.2, pp.223-234, 2014.
DOI : 10.1104/pp.100.2.868

B. Iffis, M. St-arnaud, and M. Hijri, Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes, Environmental Microbiology, vol.186, issue.8, pp.2689-2704, 2016.
DOI : 10.1016/j.jhazmat.2010.11.116

B. Iffis, M. St-arnaud, and M. Hijri, Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities, Frontiers in Plant Science, vol.8, p.1381, 2017.
DOI : 10.1038/ismej.2013.163

URL : https://www.frontiersin.org/articles/10.3389/fpls.2017.01381/pdf

R. J. Jacques, B. C. Okeke, F. M. Bento, A. S. Teixeira, M. C. Peralba et al., Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil, Bioresource Technology, vol.99, issue.7, pp.2637-2643, 2008.
DOI : 10.1016/j.biortech.2007.04.047

T. Jager, Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (oligochaeta), Environmental Toxicology and Chemistry, vol.17, issue.10, pp.2080-2090, 1998.
DOI : 10.1002/etc.5620130113

N. I. Johns, T. Blazejewski, A. L. Gomes, W. , and H. H. , Principles for designing synthetic microbial communities, Current Opinion in Microbiology, vol.31, pp.146-153, 2016.
DOI : 10.1016/j.mib.2016.03.010

URL : https://manuscript.elsevier.com/S136952741630025X/pdf/S136952741630025X.pdf

E. J. Joner, A. Johansen, A. P. Loibner, M. A. Cruz, . Dela et al., , 2001.

, Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil, Environ Sci Technol, vol.35, pp.2773-2777

D. L. Jones, Organic acids in the rhizosphere ? a critical review, Plant and Soil, vol.205, issue.1, pp.25-44, 1998.
DOI : 10.1023/A:1004356007312

D. L. Jones, A. Hodge, and Y. Kuzyakov, Plant and mycorrhizal regulation of rhizodeposition, New Phytologist, vol.35, issue.3, pp.459-480, 2004.
DOI : 10.1023/A:1024257218558

T. Kadri, T. Rouissi, K. Brar, S. Cledon, M. Sarma et al., Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review, Journal of Environmental Sciences, vol.51, 2017.
DOI : 10.1016/j.jes.2016.08.023

, J Environ Sci (China), vol.51, pp.52-74

C. S. Karigar and S. S. Rao, Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review, Enzyme Research, vol.62, issue.3, p.805187, 2011.
DOI : 10.1023/A:1023395409746

Z. Khan, D. Roman, T. Kintz, M. Delas-alas, R. Yap et al., PD1, Environmental Science & Technology, vol.48, issue.20, pp.12221-12228, 2014.
DOI : 10.1021/es503880t

J. W. Kloepper and M. N. Schroth, Plant-growth promoting rhizobacteria on radishes, Proc 4th Int Conf Plant Pathog Bact, pp.879-882, 1978.

G. A. Kowalchuk, D. S. Buma, W. De-boer, P. G. Klinkhamer, V. Veen et al., Effects of aboveground plant species composition and diversity on the diversity of soil-borne microorganisms, Antonie van Leeuwenhoek, vol.81, issue.1, pp.509-520, 2002.
DOI : 10.1023/A:1020565523615

I. Kuiper, E. L. Lagendijk, G. V. Bloemberg, and B. J. Lugtenberg, Rhizoremediation: A Beneficial Plant-Microbe Interaction, Molecular Plant-Microbe Interactions, vol.17, issue.1, pp.6-15, 2004.
DOI : 10.1094/MPMI.2004.17.1.6

Y. A. Kuzovkina and T. A. Volk, The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-ordination of structure, function and autecology, Ecological Engineering, vol.35, issue.8, pp.1178-1189, 2009.
DOI : 10.1016/j.ecoleng.2009.03.010

P. Lavelle and A. V. Spain, Soil Ecology, 2001.
DOI : 10.1007/978-94-017-5279-4

URL : https://hal.archives-ouvertes.fr/bioemco-00455666

S. H. Lee, W. S. Lee, C. H. Lee, K. , and J. G. , Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes, Journal of Hazardous Materials, vol.153, issue.1-2, pp.892-898, 2008.
DOI : 10.1016/j.jhazmat.2007.09.041

N. Ling, W. Zhang, D. Wang, J. Mao, Q. Huang et al., Root Exudates from Grafted-Root Watermelon Showed a Certain Contribution in Inhibiting Fusarium oxysporum f. sp. niveum, PLoS ONE, vol.101, issue.5, p.63383, 2013.
DOI : 10.1371/journal.pone.0063383.g007

W. Liu, J. Hou, Q. Wang, L. Ding, and Y. Luo, Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil, Chemosphere, vol.117, pp.303-308, 2014.
DOI : 10.1016/j.chemosphere.2014.07.026

R. Liu, Y. Dai, and L. Sun, Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species, PLOS ONE, vol.26, issue.474, p.120369, 2015.
DOI : 10.1371/journal.pone.0120369.t001

Y. Lu, M. Lu, F. Peng, Y. Wan, and M. Liao, Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms, Chemosphere, vol.106, pp.44-50, 2014.
DOI : 10.1016/j.chemosphere.2013.12.089

E. Luepromchai, A. C. Singer, C. Yang, and D. E. Crowley, Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria, FEMS Microbiology Ecology, vol.19, issue.58, pp.191-197, 2002.
DOI : 10.1080/02648725.1994.10647911

R. Lumactud, S. Y. Shen, M. Lau, and R. Fulthorpe, Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination, Frontiers in Microbiology, vol.109, issue.427, p.755, 2016.
DOI : 10.1111/j.1365-2672.2010.04768.x

D. S. Lundberg, S. L. Lebeis, S. H. Paredes, S. Yourstone, J. Gehring et al., Defining the core Arabidopsis thaliana root microbiome, Nature, vol.35, issue.7409, pp.86-90, 2012.
DOI : 10.1093/nar/gkl856

W. C. Ma, A. Van-kleunen, J. Immerzeel, G. Maagd, and P. , Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: Assessment of equilibrium partitioning theory in in situ studies and water experiments, Environmental Toxicology and Chemistry, vol.14, issue.9, pp.1730-1737, 1998.
DOI : 10.1139/a96-015

B. Ma, Y. He, H. Chen, J. Xu, and Z. Rengel, Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis, Environmental Pollution, vol.158, issue.3, pp.855-861, 2010.
DOI : 10.1016/j.envpol.2009.09.024

C. A. Mallon, L. Roux, X. Van-doorn, G. S. Dini-andreote, F. Poly et al., The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader???s niche, The ISME Journal, vol.88, issue.3, pp.728-741, 2018.
DOI : 10.1046/j.1365-2672.2000.00973.x

A. M. Manschadi, J. Christopher, P. Hammer, and G. L. , The role of root architectural traits in adaptation of wheat to water-limited environments, Functional Plant Biology, vol.33, issue.9, p.823, 2006.
DOI : 10.1071/FP06055

B. C. Martin, S. J. George, C. A. Price, M. H. Ryan, and M. Tibbett, The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions, Science of The Total Environment, vol.472, pp.642-653, 2014.
DOI : 10.1016/j.scitotenv.2013.11.050

S. Mayak, T. Tirosh, and B. R. Glick, Plant growth-promoting bacteria confer resistance in tomato plants to salt stress, Plant Physiology and Biochemistry, vol.42, issue.6, pp.565-572, 2004.
DOI : 10.1016/j.plaphy.2004.05.009

M. Megharaj and R. Naidu, Soil and brownfield bioremediation, Microbial Biotechnology, vol.102, issue.567, pp.1244-1249, 2017.
DOI : 10.1016/j.biortech.2011.02.088

M. Mench, N. Lepp, V. Bert, J. P. Schwitzgu-ebel, S. W. Gawronski et al., Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859, Journal of Soils and Sediments, vol.12, issue.34, pp.1039-1070, 2010.
DOI : 10.1016/j.pbi.2009.04.005

URL : https://hal.archives-ouvertes.fr/ineris-00963582

E. Montpetit and E. Lachapelle, Can policy actors learn from academic scientists?, Environmental Politics, vol.24, issue.5, pp.661-680, 2015.
DOI : 10.1016/B0-08-043076-7/04521-6

E. Montpetit and E. Lachapelle, Information, values and expert decision-making: the case of soil decontamination, Policy Sciences, vol.39, issue.4, pp.155-171, 2016.
DOI : 10.2307/3109916

A. Mrozik and Z. Piotrowska-seget, Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds, Microbiological Research, vol.165, issue.5, pp.363-375, 2010.
DOI : 10.1016/j.micres.2009.08.001

S. Mukhopadhyay, J. George, and R. E. Masto, Changes in Polycyclic Aromatic Hydrocarbons (PAHs) and Soil Biological Parameters in a Revegetated Coal Mine Spoil, Land Degradation & Development, vol.55, issue.3, pp.1047-1055, 2017.
DOI : 10.1016/j.ejsobi.2012.08.006

S. M. Nadeem, M. Ahmad, Z. A. Zahir, A. Javaid, and M. Ashraf, The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments, Biotechnology Advances, vol.32, issue.2, pp.429-448, 2014.
DOI : 10.1016/j.biotechadv.2013.12.005

T. Y. Nechitaylo, M. M. Yakimov, M. Godinho, K. N. Timmis, E. Belogolova et al., Effect of the Earthworms Lumbricus terrestris and Aporrectodea caliginosa on Bacterial Diversity in Soil, Microbial Ecology, vol.143, issue.Database issue, pp.574-587, 2010.
DOI : 10.1016/S0723-2020(99)80065-4

O. S. Olanrewaju, B. R. Glick, and O. O. Babalola, Mechanisms of action of plant growth promoting bacteria, World Journal of Microbiology and Biotechnology, vol.209, issue.11, p.197, 2017.
DOI : 10.1016/j.agee.2015.03.002

O. 'toole, J. C. Bland, and W. L. , Genotypic Variation in Crop Plant Root Systems, Adv Agron, vol.41, pp.91-145, 1987.
DOI : 10.1016/S0065-2113(08)60803-2

A. P. Pag-e, E. Yergeau, G. , and C. W. , Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons, PLoS ONE, vol.10, p.132062, 2015.

C. L. Patten and B. R. Glick, Bacterial biosynthesis of indole-3-acetic acid, Canadian Journal of Microbiology, vol.82, issue.3, pp.207-220, 1996.
DOI : 10.1073/pnas.82.19.6522

M. Pawlik, B. Cania, S. Thijs, J. Vangronsveld, and Z. Piotrowska-seget, Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site, Environmental Science and Pollution Research, vol.26, issue.73, pp.19640-19652, 2017.
DOI : 10.1094/MPMI-10-12-0241-R

J. M. Pe~-na-castro, B. E. Barrera-figueroa, L. Linares, R. Ruiz-medrano, X. Azares et al., Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress, Plant Science, vol.170, issue.4, pp.724-731, 2006.
DOI : 10.1016/j.plantsci.2005.11.004

E. Pilon-smits, PHYTOREMEDIATION, Annual Review of Plant Biology, vol.56, issue.1, pp.15-39, 2005.
DOI : 10.1146/annurev.arplant.56.032604.144214

P. Pizarro-tobias, J. L. Niqui, A. Roca, J. Solano, M. Fernandez et al., Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation, Environmental Microbiology Reports, vol.33, issue.1, pp.85-94, 2015.
DOI : 10.1016/j.envint.2006.12.005

F. Qin, M. Kakimoto, Y. Sakuma, K. Maruyama, Y. Osakabe et al., Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L, The Plant Journal, vol.53, issue.1, pp.54-69, 2007.
DOI : 10.1007/s00122-002-1131-x

L. Quiza, M. St-arnaud, and E. Yergeau, Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering, Frontiers in Plant Science, vol.6, p.507, 2015.
DOI : 10.3389/fpls.2015.00507

M. Rajkumar, S. Sandhya, M. N. Prasad, and H. Freitas, Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnology Advances, vol.30, issue.6, pp.1562-1574, 2012.
DOI : 10.1016/j.biotechadv.2012.04.011

V. Raut, I. Shaikh, B. Naphade, K. Prashar, and N. Adhapure, Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach, Chemical and Biological Technologies in Agriculture, vol.4, issue.1, p.1, 2017.
DOI : 10.1111/j.1365-2672.2011.04976.x

B. R. Reddy and N. Sethunathan, Mineralization of parathion in the rice rhizosphere, Appl Environ Microbiol, vol.45, issue.3, pp.826-829, 1983.

M. Reed and B. Glick, ) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons, Canadian Journal of Microbiology, vol.71, issue.12, pp.425-429, 2005.
DOI : 10.1016/S0304-4238(97)00105-2

H. Rodr?guez and R. Fraga, Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnology Advances, vol.17, issue.4-5, pp.319-339, 1999.
DOI : 10.1016/S0734-9750(99)00014-2

F. Rohrbacher and M. St-arnaud, Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation, Agronomy, vol.30, issue.1, p.19, 2016.
DOI : 10.1007/s11021-005-0088-6

E. Rosenberg and I. Zilber-rosenberg, Bacterial Bleaching of Corals Leads to Hologenome Concept, Microbe Magazine, vol.11, issue.1, pp.27-31, 2016.
DOI : 10.1128/microbe.11.27.1

E. Rosenberg, G. Sharon, and I. Zilber-rosenberg, The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework, Environmental Microbiology, vol.32, issue.12, pp.2959-2962, 2009.
DOI : 10.5962/bhl.title.88042

C. Ryu, M. A. Farag, C. Hu, M. S. Reddy, J. W. Kloepper et al., Bacterial Volatiles Induce Systemic Resistance in Arabidopsis, PLANT PHYSIOLOGY, vol.134, issue.3, pp.1017-1026, 2004.
DOI : 10.1104/pp.103.026583

V. Sentchilo, A. P. Mayer, L. Guy, R. Miyazaki, S. G. Tringe et al., Community-wide plasmid gene mobilization and selection, The ISME Journal, vol.60, issue.6, pp.1173-1186, 2013.
DOI : 10.1073/pnas.252630999

G. Shabir, M. Arslan, K. Fatima, I. Amin, Q. M. Khan et al., Effects of Inoculum Density on Plant Growth and Hydrocarbon Degradation, Pedosphere, vol.26, issue.5, pp.774-778, 2016.
DOI : 10.1016/S1002-0160(15)60084-4

A. C. Singer, D. E. Crowley, and I. P. Thompson, Secondary plant metabolites in phytoremediation and biotransformation, Trends in Biotechnology, vol.21, issue.3, pp.123-130, 2003.
DOI : 10.1016/S0167-7799(02)00041-0

D. R. Singleton, P. F. Hendrix, D. C. Coleman, W. , and W. B. , Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta), Soil Biology and Biochemistry, vol.35, issue.12, pp.1547-1555, 2003.
DOI : 10.1016/S0038-0717(03)00244-X

K. Smalla, G. Wieland, A. Buchner, A. Zock, J. Parzy et al., Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed, Applied and Environmental Microbiology, vol.67, issue.10, pp.4742-4751, 2001.
DOI : 10.1128/AEM.67.10.4742-4751.2001

S. E. Smith and D. Read, Mycorrhizal symbiosis, Mycorrhizal Symbiosis, p.611, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01268065

S. Spaepen and J. Vanderleyden, Auxin and plantmicrobe interactions, Cold Spring Harb Perspect Biol, vol.3, pp.1-13, 2011.

J. Springett and R. Gray, The interaction between plant roots and earthworm burrows in pasture, Soil Biology and Biochemistry, vol.29, issue.3-4, pp.621-625, 1997.
DOI : 10.1016/S0038-0717(96)00235-0

R. M. Stubbendieck, C. Vargas-bautista, and P. D. Straight, Bacterial Communities: Interactions to Scale, Frontiers in Microbiology, vol.92, issue.489, p.1234, 2016.
DOI : 10.1177/0022034513498598

T. Sun, L. Cang, Q. Wang, D. Zhou, J. Cheng et al., Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil, Journal of Hazardous Materials, vol.176, issue.1-3, pp.919-925, 2010.
DOI : 10.1016/j.jhazmat.2009.11.124

S. Taghavi, T. Barac, B. Greenberg, B. Borremans, J. Vangronsveld et al., Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene, Applied and Environmental Microbiology, vol.71, issue.12, pp.8500-8505, 2005.
DOI : 10.1128/AEM.71.12.8500-8505.2005

M. Tang, H. Chen, J. C. Huang, and T. , AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress, Soil Biology and Biochemistry, vol.41, issue.5, pp.936-940, 2009.
DOI : 10.1016/j.soilbio.2008.11.007

K. R. Theis, N. M. Dheilly, J. L. Klassen, R. M. Brucker, J. F. Baines et al., Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes, pp.28-44, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01483722

F. Thomas, C. Ebron, and A. , Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil, Frontiers in Microbiology, vol.53, issue.94, p.92, 2016.
DOI : 10.1002/jobm.201100480

URL : https://hal.archives-ouvertes.fr/hal-01780413

E. Thomassin-lacroix, M. Eriksson, K. Reimer, and W. Mohn, Biostimulation and bioaugmentation for on-site, 2002.

, The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial Biotechnology, vol.11, pp.819-832

, Rhizoremediation of petroleum hydrocarbons 831 treatment of weathered diesel fuel in Arctic soil, Appl Microbiol Biotechnol, vol.59, pp.551-556

S. Timmusk and E. G. Wagner, Gene Expression: A Possible Connection Between Biotic and Abiotic Stress Responses, Molecular Plant-Microbe Interactions, vol.12, issue.11, pp.951-959, 1999.
DOI : 10.1094/MPMI.1999.12.11.951

A. V. Tiunov and T. G. Dobrovolskaya, Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment, Pedobiologia, vol.46, issue.6, pp.595-605, 2002.
DOI : 10.1078/0031-4056-00162

E. M. Top and D. Springael, The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds, Current Opinion in Biotechnology, vol.14, issue.3, pp.262-269, 2003.
DOI : 10.1016/S0958-1669(03)00066-1

T. Toyama, T. Furukawa, N. Maeda, D. Inoue, K. Sei et al., Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria???root exudate interactions, Water Research, vol.45, issue.4, pp.1629-1638, 2011.
DOI : 10.1016/j.watres.2010.11.044

J. B. Van-beilen, E. G. Funhoff, A. Van-loon, A. Just, L. Kaysser et al., Cytochrome P450 Alkane Hydroxylases of the CYP153 Family Are Common in Alkane-Degrading Eubacteria Lacking Integral Membrane Alkane Hydroxylases, Applied and Environmental Microbiology, vol.72, issue.1, pp.59-65, 2006.
DOI : 10.1128/AEM.72.1.59-65.2006

J. D. Van-elsas and M. J. Bailey, The ecology of transfer of mobile genetic elements, FEMS Microbiology Ecology, vol.56, issue.2, pp.187-197, 2002.
DOI : 10.1099/00221287-146-10-2409

E. J. Van-opstal and S. R. Bordenstein, Rethinking heritability of the microbiome, Science, vol.349, issue.6253, pp.1172-1173, 2015.
DOI : 10.1126/science.1240659

J. D. Voss, J. C. Leon, N. V. Dhurandhar, R. , and F. T. , Pawnobiome: manipulation of the hologenome within one host generation and beyond, Frontiers in Microbiology, vol.93, issue.164, p.697, 2015.
DOI : 10.3382/ps.2014-04291

N. Weyens, D. Van-der-lelie, T. Artois, K. Smeets, S. Taghavi et al., Bioaugmentation with Engineered Endophytic Bacteria Improves Contaminant Fate in Phytoremediation, Environmental Science & Technology, vol.43, issue.24, pp.9413-9418, 2009.
DOI : 10.1021/es901997z

F. Xun, B. Xie, S. Liu, and C. Guo, Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation, Environmental Science and Pollution Research, vol.2, issue.2, pp.598-608, 2015.
DOI : 10.1007/s11356-012-1182-8

J. Yang, J. W. Kloepper, and C. Ryu, Rhizosphere bacteria help plants tolerate abiotic stress, Trends in Plant Science, vol.14, issue.1, pp.1-4, 2009.
DOI : 10.1016/j.tplants.2008.10.004

S. Yasmin, D. Souza, and D. , Effects of Pesticides on the Growth and Reproduction of Earthworm: A Review, Applied and Environmental Soil Science, vol.24, issue.12, pp.1-9, 2010.
DOI : 10.1128/AEM.69.9.5198-5206.2003

E. Yergeau, M. Arbour, R. Brousseau, D. Juck, J. R. Lawrence et al., Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments, Applied and Environmental Microbiology, vol.75, issue.19, 2009.
DOI : 10.1128/AEM.01029-09

, Appl Environ Microbiol, vol.75, pp.6258-6267

E. Yergeau, S. Sanschagrin, D. Beaumier, G. , and C. W. , Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils, PLoS ONE, vol.4, issue.1, p.30058, 2012.
DOI : 10.1371/journal.pone.0030058.t005

E. Yergeau, S. Sanschagrin, C. Maynard, M. St-arnaud, G. et al., Microbial expression profiles in the rhizosphere of willows depend on soil contamination, The ISME Journal, vol.11, issue.2, pp.344-358, 2014.
DOI : 10.1080/15226510802378483

E. Yergeau, T. H. Bell, J. Champagne, C. Maynard, S. Tardif et al., Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome, Frontiers in Microbiology, vol.8, issue.771, p.1436, 2015.
DOI : 10.1038/ismej.2013.163

E. Yergeau, C. Maynard, S. Sanschagrin, J. Champagne, D. Juck et al., ABSTRACT, Applied and Environmental Microbiology, vol.81, issue.17, pp.5855-5866, 2015.
DOI : 10.1128/AEM.01470-15

E. Yergeau, J. Tremblay, S. Joly, M. Labrecque, C. Maynard et al., Soil contamination alters the willow root and rhizosphere metatranscriptome and the root???rhizosphere interactome, The ISME Journal, vol.13, issue.3, pp.869-884, 2018.
DOI : 10.1371/journal.pbio.1002226

URL : https://hal.archives-ouvertes.fr/pasteur-01856118

J. Zavala-cruz, F. Trujillo-c, G. C. Ortiz-ceballos, and A. I. Ortiz-ceballos, Tropical endogeic earthworm population in a pollution gradient with weathered crude oil, Res J Environ Sci, vol.7, pp.15-26, 2013.

I. Zilber-rosenberg and E. Rosenberg, Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiology Reviews, vol.32, issue.5, pp.723-735, 2008.
DOI : 10.1080/089106001750462669