S. Santini, C. Lapenta, M. Logozzi, S. Parlato, M. Spada et al.,

, Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice, J Exp Med, vol.191, issue.10, pp.1777-88, 2000.

M. Montoya, G. Schiavoni, F. Mattei, I. Gresser, F. Belardelli et al., Type I interferons produced by dendritic cells promote their phenotypic and functional activation, Blood, vol.99, issue.9, pp.3263-71, 2002.
DOI : 10.1182/blood.V99.9.3263

P. Marrack, J. Kappler, and T. Mitchell, Type I Interferons Keep Activated T Cells Alive, The Journal of Experimental Medicine, vol.29, issue.3, 1999.
DOI : 10.1097/00002281-199707000-00011

G. Kolumam, S. Thomas, L. Thompson, J. Sprent, and K. Murali-krishna, Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection, The Journal of Experimental Medicine, vol.4, issue.5, pp.637-50, 2005.
DOI : 10.1038/37648

L. Bon, A. Schiavoni, G. , D. Agostino, G. Gresser et al., Type I Interferons Potently Enhance Humoral Immunity and Can Promote Isotype Switching by Stimulating Dendritic Cells In Vivo, Immunity, vol.14, issue.4, pp.461-70, 2001.
DOI : 10.1016/S1074-7613(01)00126-1

G. Jego, A. Palucka, J. Blanck, C. Chalouni, V. Pascual et al., Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6, Immunity, vol.19, issue.2, pp.225-259, 2003.
DOI : 10.1016/S1074-7613(03)00208-5

L. Cervantes-barragan, R. Zust, F. Weber, M. Spiegel, K. Lang et al., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon, Blood, vol.109, issue.3, pp.1131-1138, 2007.
DOI : 10.1182/blood-2006-05-023770

Y. Wang, M. Swiecki, M. Cella, G. Alber, R. Schreiber et al., Timing and Magnitude of Type I Interferon Responses by Distinct Sensors Impact CD8??T Cell Exhaustion and Chronic Viral Infection, Cell Host & Microbe, vol.11, issue.6, pp.631-673, 2012.
DOI : 10.1016/j.chom.2012.05.003

B. Sullivan, J. Teijaro, J. De-la-torre, and M. Oldstone, Early Virus-Host Interactions Dictate the Course of a Persistent Infection, PLoS Pathogens, vol.33, issue.1, 2015.
DOI : 10.1371/journal.ppat.1004588.g007

N. Sandler, S. Bosinger, J. Estes, R. Zhu, G. Tharp et al., Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression, Nature, vol.37, issue.7511, pp.601-606, 2014.
DOI : 10.1182/blood-2012-06-437608

J. Teijaro, C. Ng, A. Lee, B. Sullivan, K. Sheehan et al., Persistent LCMV Infection Is Controlled by Blockade of Type I Interferon Signaling, Science, vol.69, issue.2, pp.207-218, 2013.
DOI : 10.1146/annurev.pathol.1.110304.100230

E. Wilson, D. Yamada, H. Elsaesser, J. Herskovitz, J. Deng et al., Blockade of Chronic Type I Interferon Signaling to Control Persistent LCMV Infection, Science, vol.22, issue.2, pp.202-209, 2013.
DOI : 10.1016/j.immuni.2005.01.005

C. Aul, N. Gattermann, U. Germing, and A. Heyll, Adverse Effects of Interferon Treatment, Interferons: Biological Activities and Clinical Efficacy, pp.250-66, 1997.
DOI : 10.1007/978-3-642-60411-9_15

S. Sleijfer, M. Bannink, V. Gool, A. Kruit, W. Stoter et al., Side Effects of Interferon-?? Therapy, Pharmacy World & Science, vol.82, issue.2, pp.423-454, 2005.
DOI : 10.7326/0003-4819-128-5-199803010-00015

M. Gilliet, W. Cao, and Y. Liu, Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases, Nature Reviews Immunology, vol.204, issue.8, pp.594-606, 2008.
DOI : 10.4049/jimmunol.171.6.3296

M. Swiecki and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells, Nature Reviews Immunology, vol.9, issue.8, pp.471-85, 2015.
DOI : 10.1038/ni.1669

J. Lee, T. Chuang, V. Redecke, L. She, P. Pitha et al., Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7, Proceedings of the National Academy of Sciences, vol.298, issue.5595, pp.6646-51, 2003.
DOI : 10.1126/science.1075565

M. Swiecki, S. Gilfillan, W. Vermi, Y. Wang, and M. Colonna, Plasmacytoid Dendritic Cell Ablation Impacts Early Interferon Responses and Antiviral NK and CD8+ T Cell Accrual, Immunity, vol.33, issue.6, pp.955-66, 2010.
DOI : 10.1016/j.immuni.2010.11.020

J. Fonteneau, M. Larsson, A. Beignon, K. Mckenna, I. Dasilva et al., Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells, Journal of Virology, vol.78, issue.10, pp.5223-5255, 2004.
DOI : 10.1128/JVI.78.10.5223-5232.2004

H. Yoneyama, K. Matsuno, E. Toda, T. Nishiwaki, N. Matsuo et al., Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs, The Journal of Experimental Medicine, vol.160, issue.3, pp.425-460, 2005.
DOI : 10.1084/jem.180.5.1889

J. Fonteneau, M. Gilliet, M. Larsson, I. Dasilva, C. Munz et al., Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity, Blood, vol.101, issue.9, pp.3520-3526, 2003.
DOI : 10.1182/blood-2002-10-3063

J. Lund, M. Linehan, N. Iijima, and A. Iwasaki, Cutting Edge: Plasmacytoid Dendritic Cells Provide Innate Immune Protection against Mucosal Viral Infection In Situ, The Journal of Immunology, vol.177, issue.11, pp.7510-7514, 2006.
DOI : 10.4049/jimmunol.177.11.7510

M. Swiecki, Y. Wang, S. Gilfillan, and M. Colonna, Plasmacytoid Dendritic Cells Contribute to Systemic but Not Local Antiviral Responses to HSV Infections, PLoS Pathogens, vol.294, issue.10, 2013.
DOI : 10.1371/journal.ppat.1003728.g006

L. Cervantes-barragan, K. Lewis, S. Firner, V. Thiel, S. Hugues et al., Plasmacytoid dendritic cells control T-cell response to chronic viral infection, Proceedings of the National Academy of Sciences, vol.168, issue.12, pp.3012-3019, 2012.
DOI : 10.4049/jimmunol.168.12.6032

J. Denis, N. Majeau, E. Acosta-ramirez, C. Savard, M. Bedard et al., Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization, Virology, vol.363, issue.1, pp.59-68, 2007.
DOI : 10.1016/j.virol.2007.01.011

E. Acosta-ramirez, R. Perez-flores, N. Majeau, R. Pastelin-palacios, C. Gil-cruz et al., Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus, Immunology, vol.176, issue.9, pp.186-97, 2008.
DOI : 10.1016/j.virol.2007.01.011

J. Denis, E. Acosta-ramirez, Y. Zhao, M. Hamelin, I. Koukavica et al., Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform, Vaccine, vol.26, issue.27-28, pp.27-283395, 2008.
DOI : 10.1016/j.vaccine.2008.04.052

P. Lacasse, J. Denis, R. Lapointe, D. Leclerc, and A. Lamarre, Novel Plant Virus-Based Vaccine Induces Protective Cytotoxic T-Lymphocyte-Mediated Antiviral Immunity through Dendritic Cell Maturation, Journal of Virology, vol.82, issue.2, pp.785-94, 2008.
DOI : 10.1128/JVI.01811-07

C. Savard, A. Guerin, K. Drouin, M. Bolduc, M. Laliberte-gagne et al., Improvement of the Trivalent Inactivated Flu Vaccine Using PapMV Nanoparticles, PLoS ONE, vol.81, issue.6, 2011.
DOI : 10.1371/journal.pone.0021522.s009

C. Mathieu, G. Rioux, M. Dumas, and D. Leclerc, Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.7, pp.839-887, 2013.
DOI : 10.1016/j.nano.2013.02.009

M. Lebel, J. Daudelin, K. Chartrand, E. Tarrab, U. Kalinke et al., Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell-Mediated Protection from Listeria Monocytogenes Infection, The Journal of Immunology, vol.192, issue.3, pp.1071-1079, 2014.
DOI : 10.4049/jimmunol.1302030

URL : https://hal.archives-ouvertes.fr/pasteur-01135779

G. Rioux, C. Mathieu, A. Russell, M. Bolduc, M. Laliberte-gagne et al., PapMV nanoparticles improve mucosal immune responses to the trivalent inactivated flu vaccine, Journal of Nanobiotechnology, vol.12, issue.1, pp.19-29, 2014.
DOI : 10.1128/JVI.00150-11

D. Carignan, A. Therien, G. Rioux, G. Paquet, M. Gagne et al., Engineering of the PapMV vaccine platform with a shortened M2e Frontiers in Immunology | www.frontiersin, 1885.

, peptide leads to an effective one dose influenza vaccine, Vaccine, vol.33, issue.51, pp.7245-53, 2015.

G. Rioux, D. Carignan, A. Russell, M. Bolduc, M. Gagne et al., Influence of PapMV nanoparticles on the kinetics of the antibody response to flu vaccine, Journal of Nanobiotechnology, vol.30, issue.1, pp.43-53, 2016.
DOI : 10.1016/j.vaccine.2012.01.085

M. Lebel, M. Langlois, J. Daudelin, E. Tarrab, P. Savard et al., Complement component 3 regulates IFN-alpha production by plasmacytoid dendritic cells following TLR7 activation by a plant virus-like nanoparticle, J Immunol

A. Therien, M. Bedard, D. Carignan, G. Rioux, L. Gauthier-landry et al., A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling, Journal of Nanobiotechnology, vol.15, issue.9, pp.54-64, 2017.
DOI : 10.4049/jimmunol.172.9.5598

M. Lebel, K. Chartrand, E. Tarrab, P. Savard, D. Leclerc et al., Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles, Nano Letters, vol.16, issue.3, pp.1826-1858, 2016.
DOI : 10.1021/acs.nanolett.5b04877

URL : https://hal.archives-ouvertes.fr/pasteur-01351410

J. Altman, P. Moss, P. Goulder, D. Barouch, M. Mcheyzer-williams et al., Phenotypic Analysis of Antigen-Specific T Lymphocytes, Science, vol.336, issue.6198, pp.94-100, 1996.
DOI : 10.1038/336484a0

M. Battegay, S. Cooper, A. Althage, J. Banziger, H. Hengartner et al., Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates, Journal of Virological Methods, vol.33, issue.1-2, pp.191-199, 1991.
DOI : 10.1016/0166-0934(91)90018-U

J. Smit, B. Rudd, and N. Lukacs, Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus, The Journal of Experimental Medicine, vol.89, issue.5, pp.1153-1162, 2006.
DOI : 10.4049/jimmunol.171.12.6466

E. Wherry, S. Ha, S. Kaech, W. Haining, S. Sarkar et al., Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection, Immunity, vol.27, issue.4, pp.670-84, 2007.
DOI : 10.1016/j.immuni.2007.09.006

Q. Xie, H. Shen, N. Jia, H. Wang, L. Lin et al., Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9, Microbes and Infection, vol.11, issue.4, pp.515-538, 2009.
DOI : 10.1016/j.micinf.2009.02.008

N. Xu, H. Yao, G. Lv, and Z. Chen, Downregulation of TLR7/9 leads to deficient production of IFN-?? from plasmacytoid dendritic cells in chronic hepatitis B, Inflammation Research, vol.85, issue.9, pp.997-1004, 2012.
DOI : 10.1099/vir.0.80143-0

I. Rodrigue-gervais, L. Jouan, G. Beaule, D. Sauve, J. Bruneau et al., Poly(I:C) and Lipopolysaccharide Innate Sensing Functions of Circulating Human Myeloid Dendritic Cells Are Affected In Vivo in Hepatitis C Virus-Infected Patients, Journal of Virology, vol.81, issue.11, pp.5537-461001741, 1128.
DOI : 10.1128/JVI.01741-06

N. Yonkers, B. Rodriguez, K. Milkovich, R. Asaad, M. Lederman et al., TLR Ligand-Dependent Activation of Naive CD4 T Cells by Plasmacytoid Dendritic Cells Is Impaired in Hepatitis C Virus Infection, The Journal of Immunology, vol.178, issue.7, pp.4436-4480, 2007.
DOI : 10.4049/jimmunol.178.7.4436

P. Borrow, L. Martinez-sobrido, and J. De-la-torre, Inhibition of the Type I Interferon Antiviral Response During Arenavirus Infection, Viruses, vol.2, issue.11, pp.2443-8010, 2010.
DOI : 10.3390/v2112443

S. Zhou, A. Cerny, A. Zacharia, K. Fitzgerald, K. et al., Induction and Inhibition of Type I Interferon Responses by Distinct Components of Lymphocytic Choriomeningitis Virus, Journal of Virology, vol.84, issue.18, pp.9452-6200155, 2010.
DOI : 10.1128/JVI.00155-10

A. Blasius and B. Beutler, Intracellular Toll-like Receptors, Immunity, vol.32, issue.3, pp.305-320, 2010.
DOI : 10.1016/j.immuni.2010.03.012

S. Lester and K. Li, Toll-Like Receptors in Antiviral Innate Immunity, Journal of Molecular Biology, vol.426, issue.6, pp.1246-64, 2014.
DOI : 10.1016/j.jmb.2013.11.024

URL : http://europepmc.org/articles/pmc3943763?pdf=render

M. Lehner, S. Morath, K. Michelsen, R. Schumann, and T. Hartung, Induction of Cross-Tolerance by Lipopolysaccharide and Highly Purified Lipoteichoic Acid Via Different Toll-Like Receptors Independent of Paracrine Mediators, The Journal of Immunology, vol.166, issue.8, pp.5161-5168, 2001.
DOI : 10.4049/jimmunol.166.8.5161

A. Dalpke, M. Lehner, T. Hartung, and K. Heeg, Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance, Immunology, vol.168, issue.2, pp.203-215, 2005.
DOI : 10.1038/ni1028

M. Nahid, L. Benso, J. Shin, H. Mehmet, A. Hicks et al., TLR4, TLR7/8 agonist-induced miR-146a promotes macrophage tolerance to MyD88-dependent TLR agonists, Journal of Leukocyte Biology, vol.12, issue.2, pp.339-492, 2016.
DOI : 10.1038/nrc3239

T. Hayashi, C. Gray, M. Chan, R. Tawatao, L. Ronacher et al., Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7, Proceedings of the National Academy of Sciences, vol.163, issue.8, pp.2764-2773, 2009.
DOI : 10.1016/j.immuni.2006.05.013

M. Siedlar, M. Frankenberger, E. Benkhart, T. Espevik, M. Quirling et al., Tolerance Induced by the Lipopeptide Pam3Cys Is Due to Ablation of IL-1R-Associated Kinase-1, The Journal of Immunology, vol.173, issue.4, pp.2736-2781, 2004.
DOI : 10.4049/jimmunol.173.4.2736

C. Bourquin, C. Hotz, D. Noerenberg, A. Voelkl, S. Heidegger et al., Systemic Cancer Therapy with a Small Molecule Agonist of Toll-like Receptor 7 Can Be Improved by Circumventing TLR Tolerance, Cancer Research, vol.71, issue.15, pp.5123-5156, 2011.
DOI : 10.1158/0008-5472.CAN-10-3903

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nature Immunology, vol.1799, issue.5, pp.373-84, 2010.
DOI : 10.1126/science.1179050

Y. Omatsu, T. Iyoda, Y. Kimura, A. Maki, M. Ishimori et al., Development of Murine Plasmacytoid Dendritic Cells Defined by Increased Expression of an Inhibitory NK Receptor, Ly49Q, The Journal of Immunology, vol.174, issue.11, pp.6657-62, 2005.
DOI : 10.4049/jimmunol.174.11.6657

R. Pelayo, J. Hirose, J. Huang, K. Garrett, A. Delogu et al., Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow, Blood, vol.105, issue.11, pp.4407-4422, 2005.
DOI : 10.1182/blood-2004-07-2529

P. Bjorck, H. Leong, and E. Engleman, Plasmacytoid Dendritic Cell Dichotomy: Identification of IFN-?? Producing Cells as a Phenotypically and Functionally Distinct Subset, The Journal of Immunology, vol.186, issue.3, pp.1477-85, 2011.
DOI : 10.4049/jimmunol.1000454

URL : http://www.jimmunol.org/content/jimmunol/186/3/1477.full.pdf

H. Zhang, J. Gregorio, T. Iwahori, X. Zhang, O. Choi et al., A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes, Proceedings of the National Academy of Sciences, vol.94, issue.5, pp.1988-93, 2017.
DOI : 10.4049/jimmunol.0802257

M. Niederquell, S. Kurig, J. Fischer, S. Tomiuk, M. Swiecki et al., Sca-1 expression defines developmental stages of mouse pDCs that show functional heterogeneity in the endosomal but not lysosomal TLR9 response, European Journal of Immunology, vol.25, issue.11
DOI : 10.1038/75556

, Eur J Immunol, vol.43, issue.11, pp.2993-3005, 2013.

D. Barouch, M. Pau, J. Custers, W. Koudstaal, S. Kostense et al., Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity, The Journal of Immunology, vol.172, issue.10, pp.6290-6297, 2004.
DOI : 10.4049/jimmunol.172.10.6290

S. Sumida, D. Truitt, M. Kishko, J. Arthur, S. Jackson et al., Neutralizing Antibodies and CD8+ T Lymphocytes both Contribute to Immunity to Adenovirus Serotype 5 Vaccine Vectors, Journal of Virology, vol.78, issue.6, pp.2666-73, 2004.
DOI : 10.1128/JVI.78.6.2666-2673.2004

J. Chen, M. Trounstine, F. Alt, F. Young, C. Kurahara et al., locus, International Immunology, vol.5, issue.6, pp.647-56, 1993.
DOI : 10.1093/intimm/5.6.647

URL : https://hal.archives-ouvertes.fr/hal-00114734

M. Villacres, O. Literat, M. Degiacomo, W. Du, T. Frederick et al., Defective response to Toll-like receptor 3 and 4 ligands by activated monocytes in chronic hepatitis C virus infection, Journal of Viral Hepatitis, vol.193, issue.0, pp.137-181, 2008.
DOI : 10.1097/00126334-200108010-00010

W. Yeow, C. Lawson, and M. Beilharz, Antiviral activities of individual murine IFN-alpha subtypes in vivo: intramuscular injection of IFN expression constructs reduces cytomegalovirus replication, J Immunol, vol.160, issue.6, pp.2932-2941, 1998.

V. Van-pesch, H. Lanaya, J. Renauld, and T. Michiels, Characterization of the Murine Alpha Interferon Gene Family, Journal of Virology, vol.78, issue.15, pp.8219-8247, 2004.
DOI : 10.1128/JVI.78.15.8219-8228.2004

N. Gerlach, K. Gibbert, C. Alter, S. Nair, G. Zelinskyy et al.,

, Anti-retroviral effects of type I IFN subtypes in vivo, Eur J Immunol, vol.39, issue.1, pp.136-182, 2009.

V. Albrecht, T. Hofer, B. Foxwell, M. Frankenberger, and L. Ziegler-heitbrock, Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1, BMC Immunology, vol.9, issue.1, pp.69-79, 2008.
DOI : 10.1186/1471-2172-9-69

Y. Liu, D. Simmons, X. Li, D. Abbott, W. Boom et al., TLR2 Signaling Depletes IRAK1 and Inhibits Induction of Type I IFN by TLR7/9, The Journal of Immunology, vol.188, issue.3, pp.1019-1045, 2012.
DOI : 10.4049/jimmunol.1102181

D. Smith, J. Simon, J. Baker, and . Jr, Applications of nanotechnology for immunology, Nature Reviews Immunology, vol.281, issue.8, pp.592-605, 2013.
DOI : 10.1074/jbc.M509775200

N. Schwab, A. Zozulya, B. Kieseier, K. Toyka, and H. Wiendl, An Imbalance of Two Functionally and Phenotypically Different Subsets of Plasmacytoid Dendritic Cells Characterizes the Dysfunctional Immune Regulation in Multiple Sclerosis, The Journal of Immunology, vol.184, issue.9, pp.5368-74, 2010.
DOI : 10.4049/jimmunol.0903662

, Frontiers in Immunology | www.frontiersin, p.1885, 2018.

M. Lebel, K. Chartrand, D. Leclerc, and A. Lamarre, Plant viruses as nanoparticlebased vaccines and adjuvants, Vaccines (Basel), vol.33390, issue.3, pp.620-3710, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01352188

D. Leclerc, D. Beauseigle, J. Denis, H. Morin, C. Pare et al., Proteasome-Independent Major Histocompatibility Complex Class I Cross-Presentation Mediated by Papaya Mosaic Virus-Like Particles Leads to Expansion of Specific Human T Cells, Journal of Virology, vol.81, issue.3, pp.1319-261001720, 1128.
DOI : 10.1128/JVI.01720-06

G. Rioux, N. Majeau, and D. Leclerc, Mapping the surface-exposed regions of papaya mosaic virus nanoparticles, FEBS Journal, vol.74, issue.11, pp.2004-2015, 2012.
DOI : 10.1111/j.1742-4658.2012.08583.x

C. Babin, N. Majeau, and D. Leclerc, Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP, Journal of Nanobiotechnology, vol.11, issue.1, 2013.
DOI : 10.1128/JVI.02252-07

M. Santiago-raber, R. Baccala, K. Haraldsson, D. Choubey, T. Stewart et al., Type-I Interferon Receptor Deficiency Reduces Lupus-like Disease in NZB Mice, The Journal of Experimental Medicine, vol.154, issue.6, pp.777-88, 2003.
DOI : 10.1038/ni0901-785

R. Baccala, R. Gonzalez-quintial, R. Schreiber, B. Lawson, D. Kono et al., Anti-IFN-??/?? Receptor Antibody Treatment Ameliorates Disease in Lupus-Predisposed Mice, The Journal of Immunology, vol.189, issue.12, pp.5976-84, 2012.
DOI : 10.4049/jimmunol.1201477