T. Araújo-santos, N. E. Rodríguez, S. Moura-pontes, U. G. Dixt, D. R. Abánades et al., Role of Prostaglandin F2?? Production in Lipid Bodies From Leishmania infantum chagasi: Insights on Virulence, The Journal of Infectious Diseases, vol.90, issue.Pt 15, pp.1951-1961, 2014.
DOI : 10.1189/jlb.0211105

I. Becker, N. Salaiza, M. Aguirre, J. Delgado, N. Carrillo-carrasco et al., Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2, Molecular and Biochemical Parasitology, vol.130, issue.2, pp.65-74, 2003.
DOI : 10.1016/S0166-6851(03)00160-9

P. T. Bozza, I. Bakker-abreu, R. A. Navarro-xavier, and C. Bandeira-melo, Lipid body function in eicosanoid synthesis: An update, Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), vol.85, issue.5, pp.205-213, 2011.
DOI : 10.1016/j.plefa.2011.04.020

A. A. Capul, S. Hickerson, T. Barron, S. J. Turco, and S. M. Beverley, Comparisons of Mutants Lacking the Golgi UDP-Galactose or GDP-Mannose Transporters Establish that Phosphoglycans Are Important for Promastigote but Not Amastigote Virulence in Leishmania major, Infection and Immunity, vol.75, issue.9, pp.4629-4637, 1128.
DOI : 10.1128/IAI.00735-07

J. M. Coelho-finamore, V. C. Freitas, R. R. Assis, M. N. Melo, N. Novozhilova et al., Leishmania infantum: Lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts, International Journal for Parasitology, vol.41, issue.3-4, pp.333-342, 2011.
DOI : 10.1016/j.ijpara.2010.10.004

URL : https://doi.org/10.1016/j.ijpara.2010.10.004

J. F. Dermine, S. Scianimanico, É. Priv, C. Descoteaux, A. Desjardins et al., Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis, Cellular Microbiology, vol.153, issue.2, pp.115-126, 2000.
DOI : 10.1146/annurev.micro.48.1.449

A. Descoteaux, H. A. Avila, K. Zhang, S. J. Turco, and S. M. Beverley, LeishmaniaLPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability, The EMBO Journal, vol.21, issue.17, pp.4458-4469, 2002.
DOI : 10.1093/emboj/cdf447

URL : http://emboj.embopress.org/content/embojnl/21/17/4458.full.pdf

A. Descoteaux, Y. Luo, S. J. Turco, and S. M. Beverley, A specialized pathway affecting virulence glycoconjugates of Leishmania, Science, vol.269, issue.5232, pp.1869-1872, 1995.
DOI : 10.1126/science.7569927

A. Descoteaux, B. J. Mengeling, S. M. Beverley, and S. J. Turco, Leishmania donovani has distinct mannosylphosphoryltransferases for the initiation and elongation phases of lipophosphoglycan repeating unit biosynthesis, Molecular and Biochemical Parasitology, vol.94, issue.1, pp.27-40, 1998.
DOI : 10.1016/S0166-6851(98)00047-4

A. Descoteaux and S. J. Turco, The lipophosphoglycan of Leishmania and macrophage protein kinase C, Parasitology Today, vol.9, issue.12, pp.468-471, 1993.
DOI : 10.1016/0169-4758(93)90105-O

A. Descoteaux, S. J. Turco, D. L. Sacks, and G. Matlashewski, Leishmania donovani lipophosphoglycan selectively inhibits signal transduction in macrophages, J Immunol, vol.146, pp.2747-2753, 1991.

M. Desjardins and A. Descoteaux, Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan, J. Exp. Med, vol.185, 1997.
DOI : 10.1084/jem.185.12.2061

URL : http://jem.rupress.org/content/jem/185/12/2061.full.pdf

M. J. De-veer, J. M. Curtis, T. M. Baldwin, J. A. Didonato, A. Sexton et al., MyD88 is essential for clearance ofLeishmania major: possible role for lipophosphoglycan and Toll-like receptor???2 signaling, European Journal of Immunology, vol.33, issue.10, pp.2822-2831, 2003.
DOI : 10.1002/eji.200324128

C. L. Forestier, Q. Gao, and G. J. Boons, Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate?, Frontiers in Cellular and Infection Microbiology, vol.278, 2014.
DOI : 10.1074/jbc.M308063200

URL : http://journal.frontiersin.org/article/10.3389/fcimb.2014.00193/pdf

T. Ilg, Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana, The EMBO Journal, vol.19, issue.9, 1953.
DOI : 10.1093/emboj/19.9.1953

URL : http://emboj.embopress.org/content/embojnl/19/9/1953.full.pdf

T. Ilg, M. Demar, and D. Harbecke, Parasites Remain Infectious to Macrophages and Mice, Journal of Biological Chemistry, vol.65, issue.7, pp.4988-4997, 2001.
DOI : 10.1002/eji.1830271028

URL : http://www.jbc.org/content/276/7/4988.full.pdf

T. Ilg, J. Montgomery, Y. D. Stierhof, and E. Handman, , That Encodes a Membrane-associated Form of Proteophosphoglycan with a Putative Glycosylphosphatidylinositol Anchor, Journal of Biological Chemistry, vol.304, issue.44, pp.31410-31420, 1999.
DOI : 10.1016/0022-2836(82)90515-0

P. B. Joshi, B. L. Kelly, S. Kamhawi, D. L. Sacks, and W. R. Mcmaster, Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor, Molecular and Biochemical Parasitology, vol.120, issue.1, pp.33-40, 2002.
DOI : 10.1016/S0166-6851(01)00432-7

G. Kavoosi, S. K. Ardestani, and A. Kariminia, The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs), Parasitology, vol.310, issue.10, pp.1193-1199, 1017.
DOI : 10.1042/bj3100807

J. B. Lima, T. Araújo-santos, M. Lázaro-souza, A. B. Carneiro, I. C. Ibraim et al., Leishmania infantum lipophosphoglycan induced-Prostaglandin E2 production in association with PPAR-?? expression via activation of Toll like receptors-1 and 2, Scientific Reports, vol.4, issue.Pt 1, pp.41598-41615, 2017.
DOI : 10.1371/journal.pntd.0000873

R. Lodge, T. O. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cellular Microbiology, vol.58, issue.12, 1922.
DOI : 10.1046/j.1462-5822.2003.00294.x

M. J. Mcconville, M. A. Ferguson, and A. Descoteaux, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes Leishmania promastigotes: building a safe niche within macrophages, Biochem. J. Front. Cell. Infect. Microbiol, vol.294, pp.305-324, 1993.

L. F. Passero, R. R. Assis, T. N. Da-silva, P. M. Nogueira, D. H. Macedo et al., Differential modulation of macrophage response elicited by glycoinositolphospholipids and lipophosphoglycan from Leishmania (Viannia) shawi, Parasitology International, vol.64, issue.4, pp.32-35, 2015.
DOI : 10.1016/j.parint.2015.01.006

C. Privé and A. Descoteaux, Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages, European Journal of Immunology, vol.30, issue.8, pp.2235-2244, 2000.
DOI : 10.1002/1521-4141(2000)30:8<2235::AID-IMMU2235>3.0.CO;2-9

S. Rabhi, I. Rabhi, B. Trentin, D. Piquemal, B. Regnault et al., Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection, PLOS ONE, vol.16, issue.Suppl, 2016.
DOI : 10.1371/journal.pone.0148640.s008

URL : https://hal.archives-ouvertes.fr/pasteur-01351540

A. Rojas-bernabé, O. Garcia-hernández, C. Maldonado-bernal, J. Delegado-dominguez, E. Ortega et al., Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4, Parasitology, vol.166, issue.06, pp.788-800, 1017.
DOI : 10.1128/IAI.70.9.5026-5035.2002

K. A. Ryan, L. A. Garraway, A. Descoteaux, S. J. Turco, and S. M. Beverley, Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8609-8613, 1993.
DOI : 10.1073/pnas.90.18.8609

D. Sacks and S. Kamhawi, Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis, Annual Review of Microbiology, vol.55, issue.1, pp.453-483, 2001.
DOI : 10.1146/annurev.micro.55.1.453

D. L. Sacks, G. Modi, E. Rowton, G. Späth, L. Epstein et al., , 2000.

, The role of phosphoglycans in Leishmania-sand fly interactions, Proc. Natl

. Acad and . U. Sci, , pp.406-411

N. Secundino, N. Kimblin, N. C. Peters, P. Lawyer, A. A. Capul et al., Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies, Cellular Microbiology, vol.40, issue.3, pp.906-918, 2010.
DOI : 10.1042/bj2940305

G. F. Späth, L. Epstein, B. Leader, S. M. Singer, H. A. Avila et al., Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major, Proc. Natl. Acad, 2000.
DOI : 10.1093/cid/10.Supplement_2.S274

. U. Sci, , pp.9258-9263

G. F. Spath, L. A. Garraway, S. J. Turco, and S. M. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proceedings of the National Academy of Sciences, vol.126, issue.1, pp.9536-9541, 2003.
DOI : 10.1016/0003-2697(82)90118-X

N. M. Tavares, T. Araújo-santos, L. Afonso, P. M. Nogueira, U. G. Lopes et al., Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils Isolation of virulence genes directing GPI synthesis by functional complementation of Leishmania, J. Infect. Dis. Brazilian J. Med. Biol. Res, vol.210, issue.27, pp.656-666, 1994.

S. J. Turco and A. Descoteaux, Parasites, Annual Review of Microbiology, vol.46, issue.1, pp.65-94, 1992.
DOI : 10.1146/annurev.mi.46.100192.000433

A. F. Vinet, M. Fukuda, S. J. Turco, and A. Descoteaux, The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V, PLoS Pathogens, vol.36, issue.3, 2009.
DOI : 10.1371/journal.ppat.1000628.s004

K. Zhang, T. Barron, S. J. Turco, and S. M. Beverley, The LPG1 gene family of Leishmania major, Molecular and Biochemical Parasitology, vol.136, issue.1, 2004.
DOI : 10.1016/j.molbiopara.2004.02.012

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

, The reviewer LM declared a shared affiliation, with no collaboration, with two of the authors, AC and UG

. Copyright-©souza, . Matte, A. Lima, . Duque, . Quintela-carvalho et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, 2018.