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CASE REPORT Open Access

Clinical profile of comorbidity of rare
diseases in a Tunisian patient: a case report
associating incontinentia pigmenti and
Noonan syndrome
Nehla Ghedira1,2*, Arnaud Lagarde2,4, Karim Ben Ameur3,1, Sahar Elouej2,6, Rania Sakka1,3, Emna Kerkeni1,
Fatma-Zohra Chioukh3,1, Sylviane Olschwang2,4,5, Jean-Pierre Desvignes2, Sonia Abdelhak6, Valerie Delague2,
Nicolas Lévy2,4, Kamel Monastiri3,1 and Annachiara De Sandre-Giovannoli2,4

Abstract

Background: Noonan syndrome (NS) is an autosomal dominant multisystem disorder caused by the dysregulation
of several genes belonging to the RAS Mitogen Activated Protein Kinase (MAPK) signaling pathway. Incontinentia
Pigmenti (IP) is an X-linked, dominantly inherited multisystem disorder.

Case presentation: This study is the first report of the coexistence of Noonan (NS) and Incontinentia Pigmenti (IP)
syndromes in the same patient. We report on the clinical phenotype and molecular characterization of this patient.
The patient was examined by a pluridisciplinary staff of clinicians and geneticist. The clinical diagnosis of NS and IP
was confirmed by molecular investigations. The newborn girl came to our clinics due to flagrant dysmorphia and
dermatological manifestations. The clinical observations led to characterize the Incontinentia Pigmenti traits and a
suspicion of a Noonan syndrome association. Molecular diagnosis was performed by Haloplex resequencing of 29
genes associated with RASopathies and confirmed the NS diagnosis. The common recurrent intragenic deletion
mutation in IKBKG gene causing the IP was detected with an improved PCR protocol.

Conclusion: This is the first report in the literature of comorbidity of NS and IP, two rare multisystem syndromes.

Keywords: Noonan syndrome, RAS-MAPK pathway, RAF1, Dysmorphism, Incontinentia Pigmenti, X-linked disorder,
Comorbidity, Next generation sequencing

Background
Noonan syndrome (NS, OMIM 163950) is one of the
most frequent genetic disorders in children with an
autosomal dominant pattern of inheritance [1, 2]. This
multisystem disease is variably expressed with an esti-
mated prevalence of 1 in 1000–2500 live births [1, 3].
The clinical diagnosis of NS is established on the basis

of distinctive features according to different criteria de-
veloped by Van Der Burgt and al [4] in 1994. Constant
clinical traits characterizing this syndrome include:

dysmorphic facial features, variable developmental delay
with constant short stature, congenital heart defects and
chest wall anomaly often consisting of pectus carinatum
or/and pectus excavatum [5–7]. NS has also a distinct
constellation of ectodermal manifestations that depends
on the mutated gene including short and curly hair,
loose anagen hair, absent eye-brows, erythema, and
granular cell tumors, abnormal pigmented lesions (mul-
tiple pigmented naevi, “café au lait” spots and freckles.
Keratosis pilaris can also occurs [8–11].
NS has a heterogeneous genetic background that in-

volves genes encoding proteins with roles in the RAS
MAPK pathway [5, 12–14]. Gain of function mutations
in the PTPN11 gene (OMIM 176876) are found in 40–
50% of NS patients [10, 15, 16]. Other mutations in
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several genes of the cascade are less frequent: e.g. in
SOS1 (OMIM 182530, about 11% of cases), RAF1
(OMIM 164760, about 5% of cases), SHOC2 (OMIM
602775, about 2% of cases), KRAS (OMIM 190070,
about 1.5% of cases), NRAS (OMIM 164790, about 0.2%
of cases), CBL (OMIM 165360), RIT1 (OMIM 609591)
and recently, with the emergence of NGS technologies
in the molecular characterization of rare diseases, other
genes have been implicated such as RRAS (OMIM
165090), RASA2 (OMIM 601589), SOS2 (OMIM
601247) and LZTR1 (OMIM 600774) [5, 17–19]. Never-
theless, about 30% of NS cases remain without molecu-
lar confirmation.
Familial Incontinentia Pigmenti (IP, OMIM 308300) is

a rare X-linked dominant genodermatosis that affects
ectodermal tissues and is usually prenatally lethal in
males [20, 21]. However, some affected males have been
reported, either presenting with X-chromosome somatic
mosaicism or a concomitant diagnosis of Klinefelter syn-
drome [22]. In total, 900 to 1200 individuals with IP
have been reported in the literature.
More than 80% of IP patients have a recurrent gen-

omic large-scale deletion of exons 4–10 of the NEMO
gene (IKBKG, OMIM 300248), which encodes a regula-
tory component of the IKB Kinase complex, leading to
loss of NF-KB activation and increased apoptosis. Al-
though hypomorphic mutations and CNVs have been re-
ported, the architecture of the NEMO/IKBKG locus
seems to facilitate genome instability generating the high
frequency of de novo rearrangements observed in IP pa-
tients [20, 23, 24].

Case presentation
The patient was a one- month- old baby girl referred to
our center for a congenital heart defect. The baby was
born at full term (40-week s gestation). Pregnancy, as
well as the perinatal period, were unremarkable. The
baby had facial dysmorphism with broad forehead,
hypertelorism, down-slanting palpebral fissures, a high
arched palate, bifid uvula and low set posteriorly rotated
ears, long philtrum and epicanthal folds (Fig. 1a, b).
Echocardiography showed pulmonic stenosis. During the
first week of life, the baby developed Incontinentia Pig-
menti, a typical skin rush that started with papules, vesi-
cles and pustules on an erythematous base, followed by
plaques and warty papules linearly arranged over ery-
thematous lesions, then a linear brownish pigmentation
involving the trunk and the extremities developed by the
age of 1 month. All these skin lesions were distributed
along the lines of Blaschko (Fig. 1c-f). No dental or eye
anomalies were observed. She had congenital stridor, de-
layed neurological development and growth retardation
(weight was 4000 g at 2 months, < P3). These findings
were consistent with Noonan syndrome associated with

Incontinentia Pigmenti based on “Incontinentia Pigmenti
diagnostic criteria update” by Minicand al [25]. The phe-
notypes of the two syndromes evolved with the age of
the patient (Fig. 1g-j).

Methods
The clinical data were compiled by clinical geneticists
and pediatricians (R. S, K.BA, K.M, and FZ.C). The pa-
tient’s parents signed written informed consent to con-
sultation and molecular studies for both diagnostic and
research purposes and also for publication of the pa-
tient’s pictures. Along this, parents give also their con-
sent for participation in genetic testing in addition to
their child. This work complies with the declaration of
Helsinki (https://www.wma.net/policies-post/wma-de-
claration-of-helsinki-ethical-principles-for-medical-re-
search-involving-human-subjects/) and with the ethical
guidelines of the institutions involved. Genomic DNA of
the patient and her parents was manually extracted from
peripheral blood collected in EDTA tubes according to
standard salting out methods and purified by QIAmp
CDN kit (Qiagen). DNA quality and quantity were mea-
sured on Nanodrop Spectrophotometer (Thermo Scien-
tific) and by Qubit ds S Assay on Qubit 2.0 Fluorometer
(Thermo Fisher Scientific).

NGS analysis
A panel of 29 genes was designed using the online Sure
Design software (Agilent Technologies). A predesigned
Haloplex Noonan panel containing the genes PTPN11,
SOS1, RAF1, KRAS, BRAF, NRAS, HRAS, MAP2K1,
MAP2K2, SHOC2, CBL, SPRED1 and NF1 was used, to
which were added other genes involved in RASopathies
(the list of all analyzed genes can be provided on re-
quest). The size of the final target region was
232.387kpb with 570 amplicons and the mean sequence
coverage was 93.73 at 20× priori 99.41% coverage of the
target region. The preparation of the libraries was per-
formed using the Haloplex target enrichment system
dedicated to Ion Torrent PGM. Massively parallel se-
quencing was performed on an Ion Torrent PGM
(Thermo Fisher Scientific).
Raw data generated by the PGM sequencer were proc-

essed by Torrent Suite Software v.4 and aligned using
TMAPv.3. Sequence variants were identified using the
Variant Caller tool from the Ion Torrent package using
default “germline low stringency” parameters (min_co-
v_each_strand: 0, min_variant_score: 10, min_allele_freq:
0.1, snp_min_coverage: 6 snp and indel; strand_bias:
0.98 snp and 0.85 indel) then prioritized using the
in-house software Varaft (http://varaft.eu) that includes
Annovar [26] and UMP-Predictor [27] . Variants not
previously reported in healthy controls and classified as
pathogenic were evaluated for sequencing depth and
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visually inspected using the Integrative Genomic Viewer
(IGV) before validation by Sanger Sequencing using the
manufacturer’s protocol for BigDye ® Terminator se-
quencing kits. Segregation analysis was performed in
both parents by Sanger sequencing.
Genes were named following the Hugo gene nomen-

clature committee guidelines (https://www.genename-
s.org/); DNA mutations and predicted protein changes
were named following the HGVS nomenclature

guidelines available at http://www.hgvs.org/mutnomen/.
The NS-Euronet mutation database was used to check
for mutation description at https://nseuronet.com/php/.

PCR amplification method
We used an improved PCR protocol amplification which
provides a robust detection of the recurrent intragenic
deletion that removes exon4–10. This protocol has been
previously described by Guevara et al. [28].

Fig. 1 Photographs of the patient showing NS and IP manifestations. a, b front and profile photo respectively pointing facial dysmophism at the
age of 1 month with broad forehead, hypertelorism, down-slanting palpebral fissures, a high arched palate, bifid uvula and low set posteriorly
rotated ears, long philtrum and epicanthal folds; c-f typical IP manifestations at the age of 1 month showing linear brownish pigmentation
involving the trunk and the extremities; g, h front and profile photo of the patient at the age of 1 year highlights the evolution of NS phenotype;
i, j evolution of the IP manifestations at the age of 1 year, pectus excatavum becomes more pronounced
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Results
A total of 184 variants were detected across the 29 genes
analyzed. Filtering these results using in silico software
predictors of a mutation’s impact such as UMD pre-
dictor, Mutation-taster, PolyPhen and others, whose al-
gorithms are integrated into the Varaft software, issued
only one heterozygous variant as potentially pathogenic:
a heterozygous SNV in exon 7 of the RAF1 gene pre-
dicted to lead to a missense amino acid change
(NM_002880: c.788 T > G, p. Val263Gly) (Fig. 2a). This
was retained since it was correlated to the phenotypic
description of the patient and was already reported
[29].We confirmed this alteration in the patient by

Sanger Sequencing. The analysis of transmission in the
patients’ parents confirmed that it occurred as de novo
mutation (Fig. 2b).
Presence of a de novo exon 4–10 deletion of IKBKG

gene was demonstrated by PCR amplification in the pro-
band (Fig. 3a) and was confirmed in the proband’s DNA
using Sanger Sequencing of the 1045-bp band confirm-
ing a breakpoint in intron 3.(Fig. 3b).

Discussion and conclusion
To the best of our knowledge, this is the first reported clin-
ical case of NS associated with IP in a non-consanguineous
female patient. As previously discussed, several causal genes

Fig. 2 Sequencing results. a IGV browser visualization of the targeted NGS sequencing results showing the heterozygous c.788 T > G substitution
in the RAF1 gene in the patient, (reverse sequence) which is absent in another NS patient (used as a control); b Sanger sequencing confirming
the de novo appearance of the mutation in the patient, given its absence in the parents’ DNA samples
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are associated with the NS phenotype, including PTPN11,
SOS1, RAF1, BRAF, NRAS, SHOC2, CBL, and RIT1.
Our patient harbored a mutation in RAF1, in which

rare substitutions were previously reported in the
context of NS and RASopathies [30–32]. RAF1
(OMIM, 164760) is a mitogen activated protein kinase
kinase that constitutes, in addition to BRAF and
ARAF, a small family of serine threonine kinases
which relays signals from activated RAS proteins to
the major effectors of this pathway, ERK1/2 via
MEK1/2. Compared to BRAF, RAF1 and ARAF have
considerably lower MEK kinase activity, different ex-
pression profiles and also distinct regulatory mecha-
nisms: missense mutations in these two genes are
thus rarely observed in malignancies [10]. The ubiqui-
tously expressed RAF1 encodes a 648 amino acids
protein containing three functional and conserved
domains: the N-terminal CR1 (amino acids residues
61–192), CR2 (residues 251–266),, and CR3 kinase
domain (residues 333–625) [33].
About 70% of all the RAF1 mutations identified to

date are amino acid substitutions located in the CR2 do-
main. The second group of mutations, identified in 15%
of NS or LS-causing RAF1 mutations, affects the kinase
domain and the last 15% of RAF1 mutations affects two
adjacent residues, located at the C-terminus. None of
the mutations causing NS or LS are reported in a cancer
context.

Our patient’s mutation is localized at position Val263,
adjacent to the most frequently mutated residues, in the
same CR2 domain. Functional characterizations support
that mutations which affect the 14–3-3 binding motif
(such is in our case) cause an enhanced kinase activity in
downstream RAS signaling (MEK and ERK) [10, 29, 34].
The exact mechanism of RAF1 activation in mutants re-
mains unexplained.
Our patient showed a mutation that was previously

described prenatally in a fetus showing evocative signs
of Noonan syndrome (fetal hydrops and cystic hygroma-
colli) together with hypoplastic left heart syndrome
(HLHS), one of the most severe congenital heart defects,
characterized by underdevelopment of the structures in
the left-aorta complex and detectable by ultrasound at
prenatal sonography between 18 and 22 weeks of gesta-
tion of the fetal heart. In Noonan syndrome patients,
HLHS has only been described twice [35]. The same
mutation caused in our patient one of the two most fre-
quent congenital heart defects observed in NS: pulmonic
stenosis, suggesting that other factors (genetic or envir-
onmental) are involved in the determination of the car-
diac anomaly, in addition to the RAF1 p.Val263Gly
mutation.
Gain of function mutations in RAF1 were identified

for the first time in 2007 in patients with NS and nega-
tive for PTPN11, KRAS and SOS1 mutations and two of
six patients with LEOPARD syndrome [31, 36], with a

Fig. 3 Molecular confirmation of IP. a Polymerase Chain Reaction (PCR) amplification of peripheral blood genomic DNA confirms the presence of
the intragenic deletion in the IKBKG gene in the proband (the 1045 bp band) but not in her parents and in the control (the 733 bp band). b Sanger
sequencing of the 1045 bp band from the proband’s amplified DNA confirms a breakpoint in intron 3
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frequency ranging between 10 and 30%. Examination of
detailed clinical manifestations of these patients showed
a strong association among RAF1 mutations and con-
genital cardiac defects (94% of children carrying RAF1
gene mutation), namely hypertrophic cardiomyopathy
(HCM) in 70–80% of the patients, which is significant
compared to the 18% HCM prevalence observed in the
general NS population [10], but atrial septal defects
(28%), pulmonary valve stenosis (12%), and arrhythmia
are also observed [37].
Craniofacial characteristics, skeletal abnormalities and

mental retardation can also be present. Skin and hair
anomaly are less marked, but multiple naevi, café-au-lait
spots and lentigines were present in one-third of NS pa-
tients with RAF1 mutations, that suggests a predispos-
ition to hyperpigmented cutaneous lesions [10, 34, 38–
40]. In IP affected females, major linear skin hyperpig-
mentation can be associated with a variety of ophthalmic
disorders (strabismus, retinopathy, congenital cata-
ract…), nail and teeth dysplasia and occasionally central
nervous system disease ranging from seizures to severe
motor and intellectual delay [21]. Differently to NS,
skin lesions of IP occur in 4 classic cutaneous stages,
observed in our patient: stage 1 is characterized by
erythema, vesicles, and pustules; stage 2 by papules,
verrucous lesions, and hyperkeratosis; stage 3 by
hyperpigmentation; and stage 4 by pallor, atrophy,
and scarring [41]. Nail dystrophy is frequent but usu-
ally mild [25].
The relatively low incidence of RAF1 gene mutations

in patients with NS and the much rarer onset of cutane-
ous disorders within this category of patients make it
difficult to establish a clear genotype/phenotype correl-
ation and to better explain the possible underlying
mechanism of such a rare association of NS phenotypes.
The association between NS due to a RAF1 mutation
and another disease in one patient has been rarely re-
ported. Cerebrovascular anomalies [42], Burkitt lymph-
oma [43] and usually cardiomyopathies [34, 44] have
been associated to NS.

Conclusion
The Co-occurence of two or several diseases has been re-
cently reported in Tunisian population. This phenomenon
has been observed mainly for autosomal recessive diseases
and is due to the high rate of consanguinity [45, 46].
Nevertheless, the association we report between NS
and IP is probably coincidental since no link has been
established among the 2 pathophysiological pathways
and high rates of consanguinity in the Tunisian pa-
tients’ population are not likely to influence the
appearance of IP nor NS, whose inheritance patterns
are not autosomal recessive.
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