R. Zug and P. Hammerstein, Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, vol.7, p.38544, 2012.

L. Klasson, Genome evolution of Wolbachia strain wPip from the Culex pipiens group, Mol Biol Evol, vol.25, pp.1877-1887, 2008.

H. Laven, Speciation by cytoplasmic isolation in the Culex pipiens-complex, Cold Spring Harb Symp Quant Biol, vol.24, pp.166-173, 1959.

S. P. Sinkins, Wolbachia variability and host effects on crossing type in Culex mosquitoes, Nature, vol.436, pp.257-260, 2005.

T. J. Dutton and S. P. Sinkins, Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions, Insect Mol Biol, vol.13, pp.317-322, 2004.

S. P. Sinkins, H. R. Braig, and S. L. Neill, Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus, Exp Parasitol, vol.81, pp.284-291, 1995.

H. Laven, Eradication of Culex pipiens fatigans through cytoplasmic incompatibility, Nature, vol.216, pp.383-384, 1967.

L. O'connor, Open release of male mosquitoes infected with a wolbachia biopesticide: field performance and infection containment, PLoS Negl Trop Dis, vol.6, p.1797, 2012.

C. L. Brelsfoard and S. L. Dobson, Wolbachia effects on host fitness and the influence of male aging on cytoplasmic incompatibility in Aedes polynesiensis (Diptera: Culicidae), J Med Entomol, vol.48, pp.1008-1015, 2011.

D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, and J. R. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS One, vol.10, p.121126, 2015.

L. Teixeira, A. Ferreira, and M. Ashburner, The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster, PLoS Biol, vol.6, p.2, 2008.

L. M. Hedges, J. C. Brownlie, S. L. O'neill, and K. N. Johnson, Wolbachia and virus protection in insects, vol.322, p.702, 2008.

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog, vol.6, p.1000833, 2010.

L. A. Moreira, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium, Cell, vol.139, pp.1268-1278, 2009.

T. Walker, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, pp.450-453, 2011.

D. A. Joubert, Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management, PLoS Pathog, vol.12, 2016.

I. Iturbe-ormaetxe, T. Walker, and S. L. O'-neill, Wolbachia and the biological control of mosquito-borne disease, EMBO Rep, vol.12, pp.508-518, 2011.

Z. Xi, C. C. Khoo, and S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science (80-.), vol.310, pp.326-328, 2005.

C. J. Mcmeniman, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science (80-.), vol.323, pp.141-144, 2009.

T. H. Ant, C. S. Herd, V. Geoghegan, A. A. Hoffmann, and S. P. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, PLOS Pathog, vol.14, p.1006815, 2018.
DOI : 10.1371/journal.ppat.1006815

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006815&type=printable

J. E. Fraser, Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes, PLoS Pathog, vol.13, 2017.
DOI : 10.1371/journal.ppat.1006751

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006751&type=printable

A. A. Hoffmann, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, pp.454-457, 2011.

F. D. Frentiu, Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia, PLoS Negl Trop Dis, vol.8, 2014.
DOI : 10.1371/journal.pntd.0002688

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0002688&type=printable

S. L. O'neill, Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res, 2018.

N. M. Ferguson, Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti, Sci Transl Med, vol.7, pp.279-316, 2015.

M. T. Aliota, S. A. Peinado, I. D. Velez, and J. E. Osorio, The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti, Sci. Rep, vol.6, 2016.

A. F. Van-den-hurk, Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti, PLoS Negl Trop Dis, vol.6, p.1892, 2012.

H. L. Dutra, Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes, Cell Host and Microbe, vol.19, pp.771-774, 2016.
DOI : 10.1016/j.chom.2016.04.021

URL : https://doi.org/10.1016/j.chom.2016.04.021

L. Mousson, The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus, PLoS Negl Trop Dis, vol.6, p.1989, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01680937

R. L. Glaser and M. A. Meola, The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection, PLoS One, vol.5, p.11977, 2010.

J. and S. , Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes, Trop. Med. Int. Heal, 2017.

N. A. Ahmad, I. Vythilingam, Y. A. Lim, N. Z. Zabari, and H. L. Lee, Detection of Wolbachia in aedes albopictus and their effects on chikungunya virus, Am. J. Trop. Med. Hyg, 2017.

A. Gloria-soria, T. G. Chiodo, and J. R. Powell, Lack of Evidence for Natural Wolbachia Infections in Aedes aegypti (Diptera: Culicidae), J. Med. Entomol, 2018.

K. L. Coon, M. R. Brown, and M. R. Strand, Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats, Mol. Ecol, vol.25, pp.5806-5826, 2016.

P. Rossi, Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, Parasit Vectors, vol.8, p.278, 2015.

C. De-freece, Detection and isolation of the ?-proteobacterium Asaia in Culex mosquitoes, Med. Vet. Entomol, vol.28, pp.438-442, 2014.

M. L. Tantely, L. Goff, G. Boyer, S. Fontenille, and D. , An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar, Parasite, vol.23, p.20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01496134

J. Brunhes, P. Boussès, M. L. Tantely, and P. Kengne, Un nouveau genre de Culicidae (Diptera), Paulianius n. gen., avec la description de trois nouvelles espèces malgaches, Ann. la Soc. Entomol. Fr, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01672847

L. M. Tantely, S. Boyer, and D. Fontenille, Review article: A review of mosquitoes associated with Rift Valley fever virus in Madagascar, American Journal of Tropical Medicine and Hygiene, vol.92, pp.722-729, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01291994

S. Larrieu, Case report: A fatal neuroinvasive West Nile virus infection in a traveler returning from Madagascar: Clinical, epidemiological and veterinary investigations, Am. J. Trop. Med. Hyg, vol.89, pp.211-213, 2013.

R. Scientific, , vol.8, 2018.

N. P. Kumar, A. R. Rajavel, R. Natarajan, and P. Jambulingam, DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae), J. Med. Entomol, 2007.

C. M. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito, Mol Biol Evol, vol.28, pp.2761-2772, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01924446

C. Zittra, Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria, Parasites and Vectors, vol.9, 2016.

J. L. Smith and D. M. Fonseca, Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: culicidae), Am J Trop Med Hyg, vol.70, pp.339-345, 2004.

L. Baldo, Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl Env. Microbiol, vol.72, pp.7098-7110, 2006.

W. Zhou, F. Rousset, and S. Neil, Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc Biol Sci, vol.265, pp.509-515, 1998.

N. Lo, M. Casiraghi, E. Salati, C. Bazzocchi, and C. Bandi, How many wolbachia supergroups exist?, Mol Biol Evol, vol.19, pp.341-346, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004087

URL : https://academic.oup.com/mbe/article-pdf/19/3/341/23451615/mbev_19_03_0341.pdf

J. K. Stahlhut, The mushroom habitat as an ecological arena for global exchange of Wolbachia, Mol Ecol, vol.19, pp.1940-1952, 2010.

M. Gerth, M. T. Gansauge, A. Weigert, and C. Bleidorn, Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic, Nat. Commun, 2014.

D. Fontenille and P. G. Jupp, The presence of the Culex (Culex) neavei mosquito in Madagascar, its relevance in the transmission of arboviruses, Arch Inst Pasteur Madagascar, vol.56, pp.287-295, 1989.

P. L. Quan, Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Cote d'Ivoire, Virus Res, vol.147, pp.17-24, 2010.

M. Maquart, High Prevalence of West Nile Virus in Domestic Birds and Detection in 2 New Mosquito Species in Madagascar, PLoS One, vol.11, p.147589, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01300687

L. M. Tantely, C. Cêtre-sossah, T. Rakotondranaivo, E. Cardinale, and S. Boyer, Population dynamics of mosquito species in a West Nile virus endemic area in Madagascar, Parasite, vol.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01601606

M. Woolfit, I. Iturbe-ormaetxe, E. A. Mcgraw, and S. L. Neill, An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis, Mol Biol Evol, vol.26, pp.367-374, 2009.

L. Klasson, Z. Kambris, P. E. Cook, T. Walker, and S. P. Sinkins, Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti, BMC Genomics, vol.10, p.33, 2009.

J. C. Dunning-hotopp, Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes, Science, p.80, 2007.

D. Fontenille, Transmission cycles of arboviruses in Madagascar, Arch Inst Pasteur Madagascar, vol.55, pp.7-317, 1989.

P. Kittayapong, K. J. Baisley, V. Baimai, and S. L. O'neill, Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae), J. Med. Entomol, vol.37, pp.340-345, 2000.

J. Osei-poku, C. Han, C. M. Mbogo, and F. M. Jiggins, Identification of Wolbachia strains in mosquito disease vectors, PLoS One, vol.7, p.49922, 2012.

N. W. Nugapola, W. A. De-silva, and S. H. Karunaratne, Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka, Parasites and Vectors, vol.10, 2017.

C. M. Atyame, Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations, Mol Ecol, vol.24, pp.508-521, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285420

E. Dumas, Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species, BMC Evol Biol, vol.13, p.181, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01944586

M. Karami, Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence, J. Arthropod. Borne. Dis, vol.10, pp.349-365, 2016.

M. Leggewie, Culex torrentium mosquitoes from Germany are negative for Wolbachia, Medical and Veterinary Entomology, 2017.

F. N. Raharimalala, S. Boukraa, T. Bawin, S. Boyer, and F. Francis, Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates, Parasitol. Res, vol.115, pp.1391-1399, 2016.

C. M. Atyame, Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean, PLoS Negl Trop Dis, vol.5, p.1440, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01274608

F. Rodhain, C. Perez, J. Ranaivosata, Y. Clerc, and P. Coulanges, Rapport de mission entomologique sur les arbovirus en 1979, Arch. l'Institut Pasteur Madagascar, vol.48, pp.53-61, 1980.

S. F. Andriamandimby, Rift valley fever during rainy seasons, Madagascar, Emerg. Infect. Dis, vol.16, pp.963-970, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00595482

P. G. Jup, The2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies, Med Vet Entomol, vol.16, pp.245-252, 2002.

M. L. Tantely, Biology of mosquitoes that are potential vectors of Rift Valley Fever virus in different biotopes of the central highlands of Madagascar, J. Med. Entomol, vol.50, pp.603-610, 2013.

C. L. Jeffries and T. Walker, Wolbachia Biocontrol Strategies for Arboviral Diseases and the Potential Influence of Resident Wolbachia Strains in Mosquitoes, Curr. Trop. Med. Reports, vol.3, pp.20-25, 2016.

J. B. Silva, Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae), PLoS One, vol.12, 2017.

G. Favia, Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector, Proc Natl Acad Sci, vol.104, pp.9047-9051, 2007.

G. Minard, Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar, FEMS Microbiol Ecol, vol.83, pp.63-73, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00965428

C. Valiente-moro, F. H. Tran, F. N. Raharimalala, P. Ravelonandro, and P. Mavingui, Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus, BMC Microbiol, vol.13, p.70, 2013.

K. Zouache, Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar, FEMS Microbiol Ecol, vol.75, pp.377-389, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00724643

C. L. Jeffries, Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa
URL : https://hal.archives-ouvertes.fr/pasteur-01967418

, Wellcome Open Res, vol.3, p.113, 2018.

T. Walker, S. Song, and S. P. Sinkins, Wolbachia in the Culex pipiens group mosquitoes: introgression and superinfection, J Hered, vol.100, pp.192-196, 2009.

J. H. Werren and D. M. Windsor, Wolbachia infection frequencies in insects: evidence of a global equilibrium, Proc Biol Sci, vol.267, pp.1277-1285, 2000.

C. D. De-oliveira, Broader prevalence of Wolbachia in insects including potential human disease vectors, Bull Entomol Res 1-11, 2015.

Y. Yamada, Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria, Int J Syst Evol Microbiol, vol.50, pp.823-829, 2000.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

R. Scientific, , vol.8, 2018.

K. A. Jolley, M. S. Chan, and M. C. Maiden, mlstdbNet-Distributed multi-locus sequence typing (MLST) databases, BMC Bioinformatics, vol.5, 2004.

K. Tamura and M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol, vol.10, pp.512-538, 1993.