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Introduction. In Madagascar, malaria control relies on the countrywide use of long lasting insecticide treated bed nets (LLINs) and
on indoor residual spraying (IRS) in the central highland area as well as a small area on the eastern coast. We tested insecticide
resistance mechanisms of Anopheles funestus from Tsararano, a malaria endemic village in the coastal health district of Marovoay.
Methods. Insecticide susceptibility bioassays were done in July 2017 on first-generation Anopheles funestus (F1) to assess (i) the
susceptibility to permethrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%), and bendiocarb (0.1%);
(ii) the effect of preexposure to the piperonyl butoxide (PBO) synergist; and (iii) the enzymatic activities of cytochrome P450,
esterases, and glutathione S-transferases (GST). Results. Our results demonstrated thatAn. funestus was phenotypically resistant to
pyrethroids and bendiocarb, with a mortality rate (MR) of 33.6% (95%CI: 24.5-43.7%) and 86% (95%CI: 77.6-92.1%), respectively.
In contrast, An. funestus were 100% susceptible to DDT and organophosphates (malathion and fenitrothion). Preexposure of An.
funestus to PBO synergist significantly restored the susceptibility to bendiocarb (MR=100%) and increased theMR in the pyrethroid
group, from96% (95%CI: 90.0-98.9%) to 100% for deltamethrin andpermethrin, respectively (𝜒2 =43, df = 3,P< 0.0001). Enzymatic
activities of cytochromeP450 and𝛼-esteraseswere significantly elevated amongAn. funestus comparedwith the IPM reference strain
(Mann-WhitneyU= 30, P<0.0001;U = 145.5, P <0.0001, respectively). No significant differences of 𝛽-esterases activities compared
to the IPM reference strain were observed (Mann-Whitney U = 392.5, P = 0.08). Conclusion. In Tsararano, despite the absence
of an IRS programme, there is evidence of high levels of insecticide resistance to pyrethroids and bendiocarb in An. funestus.
Biochemical data indicated that a metabolic resistance mechanism through the cytochrome P450 genes is operating in the An.
funestus population.

1. Background

Malaria remains amajor public health burden on the island of
Madagascar. Today, despite the fight against malaria which is
mainly based on the use of rapid diagnostic test (RDT), the
administration of artemisinin-based combination therapies
(ACTs) as first-line treatment, and the implementation of

vector control measures, malaria remains the third leading
cause of morbidity and mortality in Madagascar, behind
respiratory infections and diarrhea [1]. In 2015, malaria
morbidity was 10.1% for all ages and 18.6% for children under
5 years of age. The malaria-related mortality ranged from
12.3% to 25.7% and incidence from 3.1% to 6.7% among
those under 5 years of age [2, 3]. Thus, malaria still hampers
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the prosperity and economic development of the country as
the economic cost of malaria is estimated at more than 50
millionUSDper year [4]. Consequently, inMadagascar, these
malaria control measures must be increased to achieve the
global malaria action plan (GMAP) [5].

Madagascar deployed traditional vector control methods
as early as 1949 [6, 7]. The global malaria eradication
campaign in the 1950s and 1960, which was based on the
large-scale use of dichlorodiphenyltrichloroethane (DDT),
was successful in Madagascar and there was a significant
drop in national malaria transmission from 1959 until the
early 1970s [8]. Unfortunately, these effortswere not sustained
and recurring malaria outbreaks were observed in the central
highlands in the 1980s [9, 10].The upsurge of the disease was
due to several factors such as the abandonment of indoor
residual spraying (IRS), insufficient funding for malaria
control, the erosion of the public health system, and the poor
knowledge of the malaria vector biology (including that of
Anopheles funestus, the main vector involved in the malaria
epidemics in the central highlands) as well as the Anopheles
resistance to insecticides [11–13].

The diversity of Madagascar’s ecosystems with 5 epi-
demiological zones, several vectors, 2 major parasites (P.
falciparum and P. vivax), and the changes they experience
as a result of human activities (e.g. the use of insecticides
for agriculture and vector control), among others, renders
the malaria vector system extremely complex and constantly
evolving. Today, it is widely accepted that vector control
strategies will only be effective in the long term if there is a
thorough knowledge of vector biology and, particularly, the
status of insecticide resistance [14, 15]. The failure to take
into account insecticide susceptibility of the potential vectors
involved in malaria transmission has contributed to failures
in malaria control throughout Africa [5].

The most effective way to prevent malaria transmission
is to avoid human-vector contact, hence the importance of
vector control [5]. However, in many countries where vector
control strategies, including IRS and long lasting insecticide
treated bed nets (LLINs), have been implemented on a
large scale, profound vector changes have been observed.
These range from behavioral changes to insecticide resis-
tance, which greatly undermine the success of current vector
control [16, 17]. This situation is all the more compelling
when considering that Anopheles exhibits a strong resistance
to pyrethroids [5], the only insecticide recommended and
approved by the WHO for bed net impregnation [18]. In
several countries, resistance to pyrethroids has been reported
in major malaria vectors including An. gambiae s.l. and
An. funestus [19, 20]. This has become an almost universal
problem and may seriously impair the progress noticed in
fighting malaria [5].

In Madagascar, IRS using DDT has been implemented
since the 1950s whereas LLINs were widely distributed in
the last decade [9, 21]. Malaria control still relies on the use
of LLINs throughout the country and on IRS in the central
highland area and in a small area on the eastern coast [22].

In malaria endemic regions, mosquito resistance can
increase rapidly following the implementation of vector
control [17]. Therefore, it is crucial to monitor the resistance

Figure 1: Map of Marovoay district (Madagascar) showing study
Tsararano area.

Figure 2: Photograph showing the vast rice fields at Tsararano
Marovoay constituting potential larval breeding site for Anopheles
funestus.

to insecticides, particularly in countries where the policy
of universal bed net coverage is applied. Recent studies
demonstrated the occurrence of the resistance to pyrethroids
and DDT in An. arabiensis population in several districts
of Madagascar [23]. However, little information is available
on the status and insecticide resistance mechanisms in An.
funestus, one of the main malaria vectors [24]. In this paper,
we report the insecticide susceptibility in wild An. funestus
population fromTsararano and the involved resistancemech-
anisms.

2. Methods

2.1. Study Site. This study was carried out in the village of
Tsararano (S 16∘10󸀠42.4󸀠󸀠, E 046∘40󸀠13.6󸀠󸀠), located in the dis-
trict ofMarovoay, in the Boeny region, approximately 540 km
northwest of Antananarivo, the capital city of Madagascar
(Figure 1). The village has about 1,200 inhabitants. It has a
tropical climate and rainfall occurs from October to April.
The average annual temperature is 29∘C and the average
rainfall is 1,500mm. Tsararano is situated on themarshy bank
of a permanent stream river, the Betsiboka. In this second
largest rice granary region of Madagascar, agriculture is the
main activity (Figure 2). Anopheles larval sites are present
all year round and malaria is endemic. No IRS has been
implemented in the district since the 1950s; however, LLINs
were distributed for the fifth round in December 2015.
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2.2. Mosquito Collection. Blood fed female mosquitoes were
collected in the morning between 6 and 10 am from ten
(10) households during the dry season in July 2017, using
a mouth aspirator and transferred at the insectary of CSB2
Andriba platform. After morphological identification [25],
one hundred and eighty-six (186) blood fed An. funestus
were individually transferred into a tube (Eppendorf�) for
forced oviposition according to the method described by
Nepomichene et al. [26]. In brief, female mosquitoes were
maintained at 28∘C in 75-80% relative humidity with free
access to 10% sucrose until they became fully gravid (about
four days) and individually placed inside a tube with a filter
paper placed at the bottom. Mosquitoes were introduced
inside the tube one by one from within the cage. Oviposited
eggs from each female were counted and pooled and were
subsequently placed into a rearing pan containing well-
water. Pooled larvae of different stages L1, L2, L3, and
L4 were fed daily with Tetramin� baby fish food. Pupae
were collected and placed in 2-L plastic buckets, which
were covered with mosquito gauze with a cotton sleeve
for introducing 10% glucose on filter paper and allowed to
emerge locally. Unfed 2-5-day females on first-generation
An. funestus (F1) were used for insecticide susceptibility
bioassay.

2.3. Susceptibility Assays. Insecticide susceptibility bioas-
says, following WHO protocol [27], were done on F1 An.
funestus generation at the insectary of Andriba platform.
Six insecticides of technical grade quality were tested: two
pyrethroids (permethrin 0.75%, deltamethrin 0.05 %), two
organophosphates (malathion 5%, fenitrothion 1%), one
organochlorine (DDT 4%), and one carbamate (bendiocarb
0.1%). Impregnated papers were obtained from the WHO
reference center (Vector Control Research Unit, University
Sains Malaysia, Penang, Malaysia). Tests were performed
with batches of 25 unfed females aged 2-5 days, fourfold
with each insecticide. Mosquitoes were exposed for 1 hour at
28∘C and 80% relative humidity. After exposure, mosquitoes
were kept in observation tubes and supplied with a 10%
sugar solution. The number of knockdown (KD) mosquitoes
was recorded at 10, 15, 20, 30, 40, 50, and 60min. Mortality
rate (MR) was recorded after 24 hours. Two batches of 25
females exposed to untreated papers were used as negative
control. All batches of insecticide paper used were pretested
on the strain of An. arabiensis from the Institut Pasteur
de Madagascar known to be susceptible to all insecticides
[28].

2.4. PBO Synergist Assays. In the event of confirmed insecti-
cides resistance, additional tests were conducted by using the
synergist piperonyl butoxide (PBO), an inhibitor of oxidases.
Three combinations were used: PBO + deltamethrin, PBO +
permethrin, and PBO + bendiocarb. For each combination,
two exposed batches and one negative control batch exposed
only to PBO were used. Each batch was constituted by 25
unfed female mosquitoes aged 2-5 days old. Mosquitoes
were first exposed for one hour to 4% PBO and second to
impregnated papers. KD mosquitoes and mortality rate were
recorded as described above.

2.5. Biochemical Enzyme Assays. A subset of F1 An. funestus
generation (nonexposed to insecticide) stored at -80∘C until
use was used for biochemical enzyme assays. Enzymatic
activities of cytochrome P450, esterases (𝛼 and 𝛽), and
glutathione S- transferases (GST) were measured according
the protocol described by Brogdon et al. [29] and by
Hemingway et al. [30], and slightly modified by Sangba et al.
[31]. Absorbance was measured using a spectrophotometer
type “Multiskan GO and SkanIt Software/Serial number 1510-
05171” (https://www.thermofisher.com/us/en/home/life-sci-
ence/lab-plasticware-supplies/lab-plasticware-supplies-learn-
ing-center/lab-plasticware-supplies-resource-library/skanIt-
software-protocols-multiskan-go.html). In the absence of
An. funestus susceptible strain, the An. arabiensis strain from
the Institut Pasteur de Madagascar known to be susceptible
to all insecticides was used as control [28]. All experiments
were conducted at the laboratory of the Institut Pasteur de
Madagascar.

2.6. Species Molecular Identification. DNA was extracted
from all F0 individual mosquitoes by DNAzol (Invitrogen,
CA, USA) according to the manufacturer’s recommenda-
tions. Anophelesmosquitoes were identified by the PCRusing
the method described by Santolamazza et al. forAn. gambiae,
and the technique described byWilkins et al. forAn. funestus
[32]. The PCR for An. gambiae s.l. discrimination is based
on the amplification of a ribosomal DNA fragment smaller
amplified by PCR by using the following primers: IGS441
(F) [TGG TCT GGG GAC CAC GTC GAC ACA GG],
IGS783 (R) [CGT TTC TCA CAT CAA GAC AAT CAA
GTC], while the PCR forAn. funestus discrimination is based
on species-specific single nucleotide polymorphism (SNPs)
in the second internal transcribed spacer region (ITS2) by
using seven primers: UV (F,) [CCG ATG CAC ACA TTC
TTG AGT GCC TA], FUN (R) [CTC GGG CAT CGA TGG
GTT AAT CAT G], VAN (R) [AAC TCT GTC GAC TTG
GTA GCC GAA C], RIV (R) [AAT CAG GGT CGA ACG
GCT TGC CG], PAR (R) [GCC CTG CGG TCC CAA GCT
AGA TT], RIVLIKE (R) [CTC CCG TGG AGT GGG GGA
TC], LEES (R) [GAC GGC ATC ATG GCG AGC AGC]. All
primers were provided by the Center for Diseases Control
(CDC) and the experiments were done at the laboratory of
Institut Pasteur de Madagascar.

2.7. Data Analysis. For each insecticide, the percentage of KD
andMRwas determined. Since mortality in negative controls
was always under 5%, no adjustment was performed for
treated batches. TheWHO 2017 criteria were used to evaluate
the status of insecticide resistance (i.e., 98-100% mortality
indicates susceptibility and <98% mortality indicates that
further investigation is required to confirm resistance) [27].
Fifty and ninety-five percent KD times (KDT

50
and KDT

95
,

respectively) were computed with probit regression models.
Mortality rates expressed in (%) and 95% confidence inter-
val were compared using Fisher exact test. The enzymatic
activities of wild An. funestus were compared with that of the
An. arabiensis strain from the Institut Pasteur de Madagascar
known to be susceptible to all insecticides by Mann-Whitney
test. Statistical analyses were performed using GraphPad�

https://www.thermofisher.com/us/en/home/life-science/lab-plasticware-supplies/lab-plasticware-supplies-learning-center/lab-plasticware-supplies-resource-library/skanIt-software-protocols-multiskan-go.html
https://www.thermofisher.com/us/en/home/life-science/lab-plasticware-supplies/lab-plasticware-supplies-learning-center/lab-plasticware-supplies-resource-library/skanIt-software-protocols-multiskan-go.html
https://www.thermofisher.com/us/en/home/life-science/lab-plasticware-supplies/lab-plasticware-supplies-learning-center/lab-plasticware-supplies-resource-library/skanIt-software-protocols-multiskan-go.html
https://www.thermofisher.com/us/en/home/life-science/lab-plasticware-supplies/lab-plasticware-supplies-learning-center/lab-plasticware-supplies-resource-library/skanIt-software-protocols-multiskan-go.html
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Table 1: Anophelines collected in Tsararano by indoor aspirator and molecular identification by PCR and circumsporozoite protein rate
(CSP). Mosquitoes were captured in July 2017 during the dry season in ten (10) households at early morning between 6 and 10 am.

Morphological identification
Methods Anopheles funestus s.l. Anopheles gambiae s.l.
Indoor aspirator mosquito catch 254 57

molecular identification
PCR species Anopheles funestus s.s. Anopheles arabiensis Anopheles gambiae

254 55 2
Plasmodium falciparum circumsporozoite protein rate

Number of Positive ELISA 3 1 0
CSP rate (%) 1.2% 1.8% 0

Table 2: Mortality rate (MR) 24 hours after exposition obtained after WHO bioassay first-generation An. funestus population (F1) from
Tsararano,Marovoay, andknockdown time 50 (KDT

50
) andknockdown time 95 (KDT

95
).Mortality rate representsmeanwith 95%confidence

intervals (CI). na: not applicable.

Mortality rate (%) Knockdown time 50 Knockdown time 95
MR (n) 95%CI KDT50 95%CI KDT95 95%CI

Permethrin 0.75% 33.6 (101) [24.5-43.7] 73.79 [70.4-77.1] na -
Deltamethrin 0.05% 39 (100) [29.4-49.2] 72.5 [68.1-76.9] na -
Bendiocarb 0.1% 86(100) [77.6-92.1] 38.1 [36.4-39.7] na -
DDT 4% 99 (101) - 34.4 [32.4-36.4] na -
Malathion 5% 100 (99) - 28.9 [25.6-32.2] 39.0 [36.9-42.0]
Fenitrothion 1% 100 (102) - 26.1 [22.7-29.6] 48.7 [44.7-52.7]

Prism software v5.0 (www.graphpad.com). A P value of 0.05
or less was considered as significant.

3. Results

3.1. Wild Anopheles Collections. In July 2017, a total of
311 malaria vectors were collected from 10 households in
Tsararano. Among those, 254 (81.7%) were An. funestus and
57 (18.3%)An. gambiae s.l. (Table 1).Most of thesemosquitoes
were blood-fed. From the 186 oviposition tubes set up with
individual gravid An. funestus females, 175 produced egg
batches. The total number of eggs collected was 12,011,
averaging 64.57 eggs per female.

3.2. Molecular Identifications and Infection Rates. All F0 An.
funestus group mosquitoes (n=254) tested by PCR showed
that they all belonged to An. funestus s.s. Of the 57 An.
gambiae s.l. tested, 96.5% (n=55) were identified as An.
arabiensis and 3.5 % (n=2) as An. gambiae (formerly S
molecular form) (Table 1).

The Plasmodium falciparum circumsporozoite protein
(CSP) rate was determined by ELISA-CSP. Of the 311Anophe-
les specimens tested by ELISA-CSP, 4 were positive for the
CSP antigen, resulting in a mean CSP rate of 1.3% (95%CI:
0.35–3.2%) with 1.2% and 1.8% for An. funestus and An.
gambiae s.l., respectively (𝜒2 = 0.12, df = 1, P = 0.7).

3.3. Susceptibility of Anopheles funestus to Insecticides. Table 2
summarizes the MR of An. funestus population induced by
all insecticides. Following 24 h observation, MRs indicated
high resistance to pyrethroids and bendiocarb (Figure 3
and Table 2). The mean MR induced by permethrin and

deltamethrin in the wild An. funestus population was 33.6%
(95%CI: 24.5–43.7%) and 39% (95%CI: 29.4–49.2%), respec-
tively. No significant difference of theMRwas observed in the
pyrethroid group (𝜒2 = 0.61, df = 1, P= 0.4). The mean MR
induced by bendiocarb in the wild An. funestus population
was 86% (95% CI: 77.1 – 92.1%).

An. funestus was 100% susceptible to DDT and
organophosphate (malathion and fenitrothion) (Figure 3 and
Table 2). Furthermore, 100% of mosquitoes were knockdown
after 60min exposure to malathion, fenitrothion, and DDT
with a short KDT

50
time <28.9min (95%CI: 25.7-32.2)

(Table 2). For pyrethroids the KDT
50

was much longer
(higher than 72min) (Table 2). Meanwhile, a low KDT

50
was

observed after bendiocarb exposure despite the resistance
(Table 2).

3.4. Effects of Synergist PBO on Anopheles funestus Resistant to
Pyrethroids and Bendiocarb. For both pyrethroids and ben-
diocarb, preexposure to PBO synergist significantly increased
the MR (Figure 3). The mean MR of deltamethrin increased
from 39% (95%CI: 29.4–49.2%) before PBO exposure to 96%
(95%CI: 90–98.9%) after PBO exposure. TheMR induced by
permethrin increased from 33.6% before PBO exposure to
100% after PBO exposure. A significant difference of MR was
observed in pyrethroid group before and after PBO exposure
(𝜒2 = 43, df = 3, P< 0.0001). Concurrently, a full susceptibility
was observed to bendiocarb after PBO exposure (MR=100%)
(Figure 3).

3.5. Biochemical Enzymatic Activities of Cytochrome P450,
Esterases, and GST. Biochemical data of enzymatic activities
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Figure 3: Insecticide bioassay mortality rate in wild Anopheles
funestus first generation (F1) from Tsararano, Marovoay (Madagas-
car), 24 hours after exposure to permethrin (0.75%), deltamethrin
(0.05%), DDT (4%), malathion (5%), fenitrothion (1%), and ben-
diocarb (0.1%) and effect of piperonyl butoxide (PBO). The data
represent medians.

of cytochrome P450, GST, and esterases (𝛼 and 𝛽) compared
to the IPM susceptible strain are shown in Figure 4. High
level enzymatic activities of cytochrome P450 compared to
the susceptible IPM reference strain were observed (Mann-
Whitney U= 30, Z = -6.51, P<0.0001) (Figure 4(a)). In
contrast, theGST activitywas significantly lower compared to
the IPMreference strain (Mann-WhitneyU= 195.5, Z = -4.33,
P<0.0001) (Figure 4(b)) suggesting the no implication ofGST
in the insecticide resistance of An. funestus from Tsararano.

Meanwhile, a significant increased 𝛼-esterase activity was
observed in the An. funestus population compared to the
IPM susceptible strain (Mann-WhitneyU= 145.5, Z = -4.99,P
<0.0001) (Figure 4(c)). In contrast, no significant 𝛽-esterase
activity was observed in the An. funestus populations from
Tsararano compared to the IPM strain (Mann-Whitney U =
392.5, Z = -1.87, P = 0.08) (Figure 4(d)).

4. Discussion

This study, conducted in Tsararano, reports the levels of
insecticide susceptibility of An. funestus, a main malaria
vector in Madagascar, to the different families of insecticides
conventionally used in vector control in the country.

Our study showed that An. funestus is the only species of
the funestus group present in the study area with a moderate
index circumsporozoite rate, which was considerably smaller
than that obtained by Marrama et al. [13], and Fontenille et
al. [11] in other parts of Madagascar. However, in many sub-
Saharan Africa regions, entomological inoculation rate (EIR)
ofAn. funestus surpasses that ofAn. gambiae, indicating their
major role in malaria transmission throughout the continent
[17, 33].

The study provides substantial knowledge on the resis-
tance status of the wild An. funestus population. The results
of insecticide bioassay trials showed a high biological level

of resistance to pyrethroid groups (deltamethrin and perme-
thrin) and bendiocarb. Similar resistance has been observed
in southern east Africa, particularly in Mozambique [34],
but in Madagascar, little information on An. funestus is
available, in contrast to An. gambiae [23, 24]. Furthermore,
investigations on the biological insecticide susceptibility per-
formed in sentinel sites of Madagascar in 2015 reported a
resistance to pyrethroids and bendiocarb in 20/37 and 8/24
sites, respectively, for An. gambiae. Meanwhile, resistance
to the pyrethroid group and bendiocarb was observed only
in 1/5 and 1/3 sites, respectively, for An. funestus, including
in the district of Marovoay [24]. However, previous studies
conducted in the Central Island of Madagascar by Rako-
tondraibe et al [35] and Ratovonjato et al [36] showed a full
susceptibility to pyrethroids and DDT in wild blood feed and
semigravid An. funestus population (F0) in contrast to our
study where F1 progeny was used according to the WHO
protocol [27]. This susceptibility difference may be due by
several factors including the intensive uses of pesticides in
Tsararano rice fields before 1950s [37] and also the age and
physiological status of mosquitoes (i.e., blood fed and/or
semigravid). For insistence, it has been demonstrated that
older mosquitoes are sometimes less resistant to insecticides,
especially when resistance is conferred by the presence of a
detoxifying enzyme, the activity of which may decline with
age [38].

On the other hand, previous studies have shown that the
occurrence of theAnopheles resistance to insecticides is partly
explained by the use of pesticides in agricultural activities
and vector control to combat malaria [39, 40]. Given that
Marovoay is the second largest rice granary in Madagascar,
Tsararano is surrounded by rice fields where insecticides
are used for pest control for an extended period of time
throughout the year. Up to today, no IRS has been performed
in Tsararano as part of the national vector control strategy.
We hypothesize that the increased resistance of An. funestus
to pyrethroids and bendiocarb observed in Tsararano might
be due to the use of pesticides in agriculture. Nevertheless,
the causes of such widespread resistance remain unknown.
However, we believe LLINs would have a limited effect in
spreading resistance in this region, as described elsewhere
[41].

The long-term efficacy of LLINs in reducing malaria mor-
bidity has recently been questioned in western Africa [17].
In Madagascar, 2,761,550 insecticide-treated nets were dis-
tributed for free to the population in 2016 [42]. Nevertheless,
a full susceptibility to organophosphates has been observed in
An. funestus population; therefore, these insecticides should
be used in priority if IRS should be performed in this area.

The presence or absence of kdr mutation in An. funestus
population from Tsararano was not investigated. Several
studies have shown the absence of this mutation in An.
funestus populations [41, 43] unlike in An. gambiae, where
the widespread distribution of kdr-w and kdr-e has been
observed in many African regions [5, 44, 45]. In addition, to
our knowledge, no kdrmutationwas observed inAn. gambiae
populations fromMadagascar [23].

Preexposure to PBO restored the full susceptibility to
pyrethroids and bendiocarb. Similar observations have been
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Figure 4: Detoxifying enzyme activities (enzymatic activity permg of protein) of wildAnopheles funestus first generation (F1) fromTsararano,
Madagascar, in comparison with Anopheles arabiensis Institut Pasteur of Madagascar susceptible strain. (a) Cytochrome P450 activities
(MFO). (b) Glutathione S-transferases activities (GST). (c) Alpha esterase activities. (d) Beta esterase activities. Red lines represent means
with 95% confidence intervals (blue lines).

made in Mozambique [34, 46]. Biochemical enzymatic
activity data showed that cytochrome P450 activity was
significantly higher in An. funestus population than the IPM
strain indicating that the pyrethroid resistance in Tsararano
is driven by the cytochrome P450 genes, as previously
observed inMozambique and in theCentral AfricanRepublic
[34, 46]. In addition, we hypothesize that overexpression of
cytochrome P450s also confers a cross-resistance to carba-
mates. This situation is particularly likely if the pyrethroid
resistance results from a change in a P450 regulatory region,
rather than amutation in a single P450 structural gene, which
could produce cross-resistance to several insecticide classes
including carbamates, as previously observed inMozambique
[34]. Interestingly, previous studies revealed that pyrethroid
resistance in An. funestus population is mainly driven by key
cytochrome P450s genes such as CYP6P9a, CYP6P9b, and
CYP6M7 [47, 48]. However, the gene expression pattern of
the detoxification linked to this cross-resistance is not well
understood.

Furthermore, a significant overexpression activity of
𝛼-esterase was observed in An. funestus from Tsararano.

However, no difference in𝛽-esterase activity was observed. In
contrast, GST activity was significantly lower. This confirms
the susceptibility of An. funestus from Tsararano to DDT. In
fact, the evidence of resistance to the two major classes of
insecticides (pyrethroids and bendiocarb) in the An. funestus
population from Tsararano may constitute a potential threat
to the success of the malaria vector control programme
in this region. In addition, given the wide distribution of
An. funestus in Madagascar, further investigation in other
districts through the exploration of resistance profile is
needed. This will provide information to elaborate adequate
vector resistance management.

5. Conclusions

Our study showed evidence of resistance to pyrethroids
and bendiocarb in an An. funestus population. Enzymatic
activities data indicated implication of cytochrome P450
genes in the resistance of An. funestus with a suspected
cross-resistance between pyrethroids and carbamate. The
coexistence of this cross-resistance in An. funestus, where
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confirmed, constitutes a serious concern for the future suc-
cess of malaria control programme.
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