A. J. Garber, Obesity and type 2 diabetes: Which patients are at risk? Diabetes Obes, vol.14, pp.399-408, 2012.

K. L. Tucker, Assessment of usual dietary intake in population studies of gene-diet interaction, Nutr. Metab. Cardiovasc. Dis, vol.17, pp.74-81, 2007.

M. Pekkarinen, Methodology in the collection of food consumption data, World Rev. Nutr. Diet, vol.12, pp.145-171, 1970.

J. Halkjaer, A. Olsen, K. Overvad, M. U. Jakobsen, H. Boeing et al., Intake of total, animal and plant protein and subsequent changes in weight or waist circumference in European men and women: The Diogenes project, Int. J. Obes, vol.35, pp.1104-1113, 2011.

G. D. Foster, H. R. Wyatt, J. O. Hill, B. G. Mcguckin, C. Brill et al., A randomized trial of a low-carbohydrate diet for obesity, N. Engl. J. Med, vol.348, pp.2082-2090, 2003.

D. K. Layman, Symposium: Dairy Product Components and Weight Regulation the Role of Leucine in Weight Loss Diets and Glucose Homeostasis, J. Nutr, vol.133, pp.261-267, 2003.

L. Q. Qin, P. Xun, D. Bujnowski, M. L. Daviglus, L. Van-horn et al., Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults, J. Nutr, vol.141, pp.249-254, 2011.

M. Isanejad, A. Z. Lacroix, C. A. Thomson, L. Tinker, J. C. Larson et al., Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women's Health Initiative, Br. J. Nutr, vol.117, pp.1523-1530, 2017.

L. F. Tinker, G. E. Sarto, B. V. Howard, Y. Huang, M. L. Neuhouser et al., Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women's Health Initiative, Am. J. Clin. Nutr, vol.94, pp.1600-1606, 2011.

L. Fontana, N. E. Cummings, S. I. Arriola-apelo, J. C. Neuman, I. Kasza et al., Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health, Cell Rep, vol.16, pp.520-530, 2016.

C. J. Lynch and S. H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance, Nat. Rev. Endocrinol, vol.10, pp.723-736, 2014.

A. Rietman, J. Schwarz, D. Tomé, F. J. Kok, and M. Mensink, High dietary protein intake, reducing or eliciting insulin resistance?, Eur. J. Clin. Nutr, vol.68, pp.973-979, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173416

J. Cortiella, D. E. Matthews, R. A. Hoerr, D. M. Bier, and V. R. Young, Leucine kinetics at graded intakes in young men: Quantitative fate of dietary leucine, Am. J. Clin. Nutr, vol.48, pp.998-1009, 1988.

B. Merz, L. Frommherz, M. J. Rist, S. E. Kulling, A. Bub et al., Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women-Results from the KarMeN Study, Nutrients, vol.10, 2018.

Y. Zheng, Y. Li, Q. Qi, A. Hruby, J. E. Manson et al., Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes, Int. J. Epidemiol, vol.45, pp.1482-1492, 2016.

P. Würtz, P. Soininen, A. J. Kangas, T. Rönnemaa, T. Lehtimäki et al., Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults, Diabetes Care, vol.36, pp.648-655, 2013.

P. Felig, E. Marliss, G. F. Cahill, and . Jr, Plasma amino acid levels and insulin secretion in obesity, N. Engl. J. Med, vol.281, pp.811-816, 1969.

C. B. Newgard, J. An, J. R. Bain, M. J. Muehlbauer, R. D. Stevens et al., A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance, Cell Metab, vol.9, pp.311-326, 2009.

G. A. Walford, Y. Ma, C. Clish, J. C. Florez, T. J. Wang et al., Diabetes Prevention Program Research Group. Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program, Diabetes, vol.65, pp.1424-1433, 2016.

B. C. Batch, K. Hyland, and L. P. Svetkey, Branch chain amino acids: Biomarkers of health and disease, Curr. Opin. Clin. Nutr. Metab. Care, vol.17, pp.86-89, 2014.

Z. Bloomgarden, Diabetes and branched-chain amino acids: What is the link?, J. Diabetes, vol.10, pp.350-352, 2018.

I. Manoli and C. P. Venditti, Disorders of branched chain amino acid metabolism, Transl. Sci. Rare Dis, vol.1, pp.91-110, 2016.

S. Haydar, C. Lautier, and F. Grigorescu, Branched chain amino acids at the edge between mendelian and complex disorders, Acta Endocrinol. Buchar, vol.14, pp.238-247, 2018.

G. Asghari, H. Farhadnejad, F. Teymoori, P. Mirmiran, M. Tohidi et al., High dietary intakes of branched-chain amino acids is associated with increased risk of insulin resistance in adults, J. Diabetes, vol.10, pp.357-364, 2018.

S. H. Shah, D. R. Crosslin, C. S. Haynes, S. Nelson, C. B. Turer et al., Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss, Diabetologia, vol.55, pp.321-330, 2012.

F. Grigorescu, New Genetic Approaches in Understanding Susceptibility for Metabolic Syndrome in Immigrant Populations Around Mediterranean Area, Acta Endocrinol. Buchar, vol.8, pp.87-98, 2012.

K. L. Tucker, C. E. Smith, C. Q. Lai, and J. M. Ordovas, Quantifying diet for nutrigenomic studies, Annu. Rev. Nutr, vol.33, pp.349-371, 2013.

J. M. Beasley, A. Davis, and W. T. Riley, Evaluation of a web-based, pictorial diet history questionnaire, Public Health Nutr, vol.12, pp.651-659, 2009.

L. Gemming, A. Doherty, P. Kelly, J. Utter, and C. N. Mhurchu, Feasibility of a SenseCam-assisted 24-h recall to reduce under-reporting of energy intake, Eur. J. Clin. Nutr, vol.67, pp.1095-1099, 2013.

F. Kong, J. Tan, and . Dietcam, Automatic dietary assessment with mobile camera phones, Pervasive Mob. Comput, vol.8, pp.147-163, 2012.

H. Forster, R. Fallaize, C. Gallagher, C. B. O'donovan, C. Woolhead et al., Online dietary intake estimation: The Food4Me food frequency questionnaire, J. Med. Internet Res, vol.16, 2014.

M. Touvier, E. Kesse-guyot, C. Méjean, C. Pollet, A. Malon et al., Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies, Br. J. Nutr, vol.105, pp.1055-1064, 2011.

C. M. Timon, R. Van-den-barg, R. J. Blain, L. Kehoe, K. Evans et al., A review of the design and validation of web-and computer-based 24-h dietary recall tools, Nutr. Res. Rev, vol.29, pp.268-280, 2016.

C. A. Blanton, A. J. Moshfegh, D. J. Baer, and M. J. Kretsch, The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake, J. Nutr, vol.136, pp.2594-2599, 2006.

N. Slimani, P. Ferrari, M. Ocké, A. Welch, H. Boeing et al., Standardization of the 24-hour diet recall calibration method used in the European prospective investigation into cancer and nutrition (EPIC): General concepts and preliminary results, Eur. J. Clin. Nutr, vol.54, pp.900-917, 2000.

K. A. Loth, Nutritional Data Systems for Research, Encyclopedia of Feeding and Eating Disorders

T. Wade and . Ed, , pp.1-3, 2015.

B. Liu, H. Young, F. L. Crowe, V. S. Benson, E. A. Spencer et al., Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies, Public Health Nutr, vol.14, 1998.

S. Adriouch, H. Lelong, E. Kesse-guyot, J. Baudry, A. Lampuré et al., Compliance with Nutritional and Lifestyle Recommendations in 13,000 Patients with a Cardiometabolic Disease from the Nutrinet-Santé Study, Nutrients, vol.9, 2017.

C. Thanh, P. Logiciel, and . Idi, Information Diététique Intégrée) pour MacIntosh et, P.C. In Les Dossiers d'Agropolis: Alimentation Nutrition Santé, vol.25, 2005.

H. Suga, K. Murakami, and S. Sasaki, Development of an amino acid composition database and estimation of amino acid intake in Japanese adults, Asia Pac. J. Clin. Nutr, vol.22, pp.188-199, 2013.

B. J. Westrich, I. M. Buzzard, L. C. Gatewood, and P. G. Mcgovern, Accuracy and efficiency of estimating nutrient values in commercial food products using mathematical optimization, J. Food Compos. Anal, vol.7, pp.223-239, 1994.

, World Medical Association General Assembly. Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects; World Medical Association, 2013.

, Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), Expert Panel on Detection, vol.285, pp.2486-2497, 2001.

M. Wanner, C. Hartmann, G. Pestoni, B. W. Martin, M. Siegrist et al., Validation of the Global Physical Activity Questionnaire for self-administration in a European context, BMJ Open Sport Exerc. Med, vol.3, 2017.

, Questionnaire Mondial sur la Pratique D'activités Physiques (GPAQ), 2013.

, Avis de l'Anses, Rapport D'expertise Collective, ANSES. Actualisation des Repères du PNNS: Révision des Repères de Consommations Alimentaires, 2016.

J. A. Harris and F. G. Benedict, A biometric study of basal metabolism in man, Proc. Natl. Acad. Sci, vol.4, pp.370-373, 1918.

C. Lautier, S. A. El-mkadem, E. Renard, J. F. Brun, J. C. Gris et al., Complex haplotypes of IRS2 gene are associated with severe obesity and reveal heterogeneity in the effect of Gly1057Asp mutation, Hum. Genet, vol.113, pp.34-43, 2003.

A. Trichopoulou and K. Georga, Composition Tables of Foods and Greek Dishes, pp.1-158, 2004.

, The ministry of Health General Directorate of Primary Health Care. Department of Nutrition and Physical Activity, 2014.

G. Block, C. M. Dresser, A. M. Hartman, and M. D. Carroll, Nutrient sources in the American diet: Quantitative data from the NHANES II survey. I. Vitamins and minerals, Am. J. Epidemiol, vol.122, pp.13-26, 1985.

F. E. Thompson, A. F. Subar, C. M. Loria, J. L. Reedy, and T. Baranowski, Need for technological innovation in dietary assessment, J. Am. Diet. Assoc, vol.110, pp.48-51, 2010.

W. R. Parnell, N. C. Wilson, and D. G. Russell, Methodology of the 1997 New Zealand National Nutrition Survey, N. Z. Med. J, vol.114, pp.123-126, 2001.

S. Shin, E. Park, D. H. Sun, T. K. You, M. J. Lee et al., Development and Evaluation of a Web-based Computer-Assisted Personal Interview System (CAPIS) for Open-ended Dietary Assessments among Koreans, Clin. Nutr. Res, vol.3, pp.115-125, 2014.

C. R. Daniel, K. Kapur, M. J. Mcadams, S. Dixit-joshi, N. Devasenapathy et al., Development of a field-friendly automated dietary assessment tool and nutrient database for India, Br. J. Nutr, vol.111, pp.160-171, 2014.

M. Brustad, G. Skeie, T. Braaten, N. Slimani, and E. Lund, Comparison of telephone vs face-to-face interviews in the assessment of dietary intake by the 24 h recall EPIC SOFT program-The Norwegian calibration study, Eur. J. Clin. Nutr, vol.57, pp.107-113, 2003.

L. Arab, K. Wesseling-perry, P. Jardack, J. Henry, and A. Winter, Eight self-administered 24-hour dietary recalls using the Internet are feasible in African Americans and Whites: The energetics study, J. Am. Diet. Assoc, vol.110, pp.857-864, 2010.

L. Sonnenberg, M. Pencina, R. Kimokoti, P. Quatromoni, B. H. Nam et al., Dietary patterns and the metabolic syndrome in obese and non-obese Framingham women, Obes. Res, vol.13, pp.153-162, 2005.

E. Gavelle, J. F. Huneau, and F. Mariotti, Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population, Nutrients, vol.10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761203

, Guidelines for Checking Food Composition Data Prior to the Publication of a User Table/Database-Version 1.0, 2018.

K. Ishikawa-takata and H. Takimoto, Current protein and amino acid intakes among Japanese people: Analysis of the 2012 National Health and Nutrition Survey, Geriatr. Gerontol. Int, vol.18, pp.723-731, 2018.

J. Ishihara, H. Todoriki, M. Inoue, and S. Tsugane, Validity of a self-administered food-frequency questionnaire in the estimation of amino acid intake, Br. J. Nutr, vol.101, pp.1393-1399, 2009.

H. Suga, K. Asakura, S. Sasaki, M. Nojima, H. Okubo et al., Validation study of a self-administered diet history questionnaire for estimating amino acid intake among Japanese adults, Asia Pac. J. Clin. Nutr, vol.27, pp.638-645, 2018.

A. C. Pallottini, C. H. Sales, . Dos-santos, D. A. Vieira, D. M. Marchioni et al., Dietary BCAA Intake Is Associated with Demographic, Socioeconomic and Lifestyle Factors in Residents of São Paulo, Brazil, vol.9, p.449, 2017.

C. Nagata, K. Nakamura, K. Wada, M. Tsuji, Y. Tamai et al., Branched-chain amino acid intake and the risk of diabetes in a Japanese community: The Takayama study, Am. J. Epidemiol, vol.178, pp.1226-1232, 2013.

A. P. Okekunle, X. Wu, W. Duan, R. Feng, Y. Li et al., Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can, J. Diabetes, vol.42, pp.484-492, 2018.