S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis et al., Climate change 2007: The physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, 2007.

D. Schröter, W. Cramer, R. Leemans, I. C. Prentice, M. B. Araújo et al., Ecosystem service supply and vulnerability to global change in Europe, Science, vol.310, pp.1333-1340, 2005.

J. Luterbacher, E. Xoplaki, A. Press, C. Casty, H. Wanner et al., Mediterranean climate variability over the last centuries: a review, Dev Earth Environ Sci, vol.4, pp.27-148, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00091279

F. Giorgi and P. Lionello, Climate change projections for the Mediterranean region, Glob Planet Chang, vol.63, pp.90-104, 2008.

F. Giorgi, Climate change hot-spots, Geophys Res Lett, vol.33, p.8707, 2006.

L. K. Koch, J. Kochmann, S. Klimpel, and S. Cunze, Modeling the climatic suitability of leishmaniasis vector species in, Europe. Sci Rep, vol.7, p.13325, 2017.

B. M. Carvalho, E. F. Rangel, and M. M. Vale, Evaluation of the impacts of climate change on disease vectors through ecological niche modelling, Bull Entomol Res, vol.107, pp.419-449, 2017.

S. Mcintyre, E. F. Rangel, P. D. Ready, and B. M. Carvalho, Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America, Parasit Vectors, vol.10, p.157, 2017.

D. J. Rogers and S. E. Randolph, Climate change and vector-borne diseases, Adv Parasitol, vol.62, pp.345-81, 2006.

, World Health Organization Regional Office for Europe. Floods: Climate change and adaptation strategies for human health, 2002.

M. Maroli, M. D. Feliciangeli, L. Bichaud, R. N. Charrel, and L. Gradoni, Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern, Med Vet Entomol, vol.27, pp.123-170, 2013.

H. Aspöck, T. Gerersdorfer, H. Formayer, and J. Walochnik, Sandflies and sandflyborne infections of humans in central Europe in the light of climate change, Wien Klin Wochenschr, vol.120, pp.24-33, 2008.

R. Killick-kendrick, K. , and M. , The laboratory colonization of Phlebotomus ariasi (Diptera: Psychodidae), Ann Parasitol Hum Comp, vol.62, pp.354-360, 1987.

J. A. Rioux, J. P. Aboulker, G. Lanotte, R. Killick-kendrick, and A. Martini-dumas, Ecology of leishmaniasis in the south of France. 21. Influence of temperature on the development of Leishmania infantum Nicolle, Ann Parasitol Hum Comp, vol.60, pp.221-230, 1908.

P. A. Bates, Leishmania sand fly interaction: progress and challenges, Curr Opin Microbiol, vol.11, pp.340-344, 2008.

P. A. Bates, Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies, Int J Parasitol, vol.37, pp.1097-106, 2007.

W. Martens and A. J. Mm, Environmental Change, Climate and Health: Issues and Research Methods, 2009.

T. J. Naucke, B. Menn, D. Massberg, and S. Lorentz, Sandflies and leishmaniasis in Germany, Parasitol Res, vol.103, pp.65-73, 2008.

N. Mencke, The importance of canine leishmaniosis in non-endemic areas, with special emphasis on the situation in Germany, Berl Munch Tierarztl Wochenschr, vol.124, pp.434-476, 2011.

M. G. Gogoa?e, I. Teodorescu, C. Preda, and S. C. Ionescu, Two case reports on visceral leishmaniasis diagnosed in Romania, Roum Arch Microbiol Immunol, vol.72, pp.49-62, 2013.

B. Tánczos, N. Balogh, L. Király, I. Biksi, L. Szeredi et al., First record of autochthonous canine leishmaniasis in Hungary. Vector Borne Zoonotic Dis, vol.12, pp.588-94, 2012.

J. Elith, C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier et al., Novel methods improve prediction of species' distributions from occurrence data, Ecography, vol.29, pp.129-51, 2006.

M. B. Araújo and M. New, Ensemble forecasting of species distributions, Trends Ecol Evol, vol.22, pp.42-49, 2007.

A. Annajar, B. B. Hanafi, H. A. Obenauer, and P. J. , The potential distribution of Phlebotomus papatasi (Diptera: Psychodidae) in Libya based on ecological niche model, J Med Entomol, vol.49, pp.739-784, 2012.

S. Barón, J. Martín-sánchez, M. Gállego, M. Morales-yuste, S. Boussaa et al., Intraspecific variability (rDNA ITS and mtDNA Cyt b) of Phlebotomus sergenti in Spain and Morocco, Acta Trop, vol.107, pp.259-67, 2008.

C. Ballart, S. Barón, M. M. Alcover, M. Portús, and M. Gállego, Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: first finding of P. perniciosus and wide distribution of P. ariasi, Acta Trop, vol.122, pp.155-164, 2012.

F. Franco, F. Morillas-márquez, S. D. Barón, M. Morales-yuste, R. Gálvez et al., Genetic structure of Phlebotomus (Larroussius) ariasi populations, the vector of Leishmania infantum in the western Mediterranean: epidemiological implications, Int J Parasitol, vol.40, pp.1335-1381, 2010.

D. Otranto, D. De-caprariis, R. P. Lia, V. Tarallo, V. Lorusso et al., Prevention of endemic canine vector-borne diseases using imidacloprid 10% and permethrin 50% in young dogs: a longitudinal field study, Vet Parasitol, vol.172, pp.323-355, 2010.

J. Martín-sánchez, M. Gállego, S. Barón, S. Castillejo, and F. Morillas-marquez, Pool screen PCR for estimating the prevalence of Leishmania infantum infection in sandflies (Diptera: Nematocera, Phlebotomidae), Trans R Soc Trop Med Hyg, vol.100, pp.527-559, 2006.

S. Branco, C. Alves-pires, M. C. Cortes, S. Cristovão, J. Gonçalves et al., Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Acta Trop, vol.125, pp.339-387, 2013.

B. Chalghaf, S. Chlif, B. Mayala, W. Ghawar, J. Bettaieb et al., Ecological niche modeling for the prediction of the geographic distribution of cutaneous leishmaniasis in Tunisia, Am J Trop Med Hyg, vol.94, pp.844-51, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356536

S. Demir, B. Gocmen, and Y. Ozbel, Faunistic study of sand flies in northern Cyprus, North-West J Zool, vol.6, pp.149-61, 2010.

J. Depaquit, E. Lienard, A. Verzeaux-griffon, H. Ferté, A. Bounamous et al., Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA, Infect Genet Evol, vol.8, pp.159-70, 2008.

C. Faraj, S. Ouahabi, E. B. Adlaoui, E. Elkohli, M. Lakraa et al., Insecticide susceptibility status of Phlebotomus (Paraphlebotomus) sergenti and Phlebotomus (Phlebotomus) papatasi in endemic foci of cutaneous leishmaniasis in Morocco, Parasit Vectors, vol.5, p.51, 2012.

H. A. Kassem, J. Siri, H. A. Kamal, and M. L. Wilson, Environmental factors underlying spatial patterns of sand flies (Diptera: Psychodidae) associated with leishmaniasis in southern Sinai, Egypt. Acta Trop, vol.123, pp.8-15, 2012.

N. M. Khalid, M. A. Aboud, F. M. Alrabba, D. Elnaiem, and F. Tripet, Evidence for genetic differentiation at the microgeographic scale in Phlebotomus papatasi populations from Sudan, Parasit Vectors, vol.5, p.249, 2012.

J. Prudhomme, F. Gunay, N. Rahola, F. Ouanaimi, S. Guernaoui et al., Wing size and shape variation of Phlebotomus papatasi (Diptera: Psychodidae) populations from the south and north slopes of the Atlas Mountains in Morocco, J Vector Ecol, vol.37, pp.137-184, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02065059

S. Saatchi, W. Buermann, H. Ter-steege, S. Mori, and T. B. Smith, Modeling distribution of Amazonian tree species and diversity using remote sensing measurements, Remote Sens Environ, vol.112, pp.2000-2017, 2008.

S. Kim, G. Flato, and G. Boer, A coupled climate model simulation of the last glacial maximum, part 2: approach to equilibrium, Clim Dyn, vol.20, pp.635-61, 2003.

J. Franklin, Mapping Species Distributions: Spatial Inference and Prediction, 2010.

P. Mccullagh and J. A. Nelder, Generalized Linear Models, 1989.

T. Hastie and R. Tibshirani, Generalized Additive Models. London: Chapman and Hall, 1990.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull Math Biophys, vol.5, pp.115-148, 1943.

S. J. Phillips, M. Dudík, and R. E. Schapire, A maximum entropy approach to species distribution modeling, Proceedings of the 21st International Conference on Machine Learning ICML '04, p.83, 2004.

J. R. Busby, BIOCLIM -a bioclimatic analysis and predictive system, Nature Conservation: Cost Effective Biological Surveys and Data Analysis, pp.64-72

L. Breiman, Random forests, Mach Learn, vol.45, pp.5-32, 2001.

O. Allouche, A. Tsoar, and R. Kadmon, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS), J Appl Ecol, vol.43, pp.1223-1255, 2006.

S. J. Phillips, M. Dud, J. Elith, C. H. Graham, A. Lehmann et al., Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecol Appl, vol.19, pp.181-97, 2009.

R. G. Mateo, T. B. Croat, Á. M. Felicísimo, and J. Muñoz, Profile or group discriminative techniques? Generating reliable species distribution models using pseudoabsences and target-group absences from natural history collections, Divers Distrib, vol.16, pp.84-94, 2010.

W. Thuiller, B. Lafourcade, R. Engler, and M. B. Araújo, BIOMOD -a platform for ensemble forecasting of species distributions, Ecography, vol.32, pp.369-73, 2009.

R. Development-core and . Team, R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2008.

E. R. Cross and K. C. Hyams, The potential effect of global warming on the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia, Environ Health Perspect, vol.104, pp.724-731, 1996.

K. Rajesh and K. Sanjay, Change in global climate and prevalence of visceral leishmaniasis, Int J Sci Res Publ, vol.3, pp.2250-3153, 2013.

A. J. Trajer, A. Bede-fazekas, L. Hufnagel, L. Horvath, J. Bobvos et al., The effect of climate change on the potential distribution of the European Phlebotomus species, Appl Ecol Environ Res, vol.11, pp.189-208, 2013.

G. E. Hutchinson, Concluding remarks, Cold Spring Harb Symp Quant Biol, vol.22, pp.415-442, 1957.

R. Killick-kendrick, T. J. Wilkes, M. Bailly, I. Bailly, and L. A. Righton, Preliminary field observations on the flight speed of a phlebotomine sandfly, Trans R Soc Trop Med Hyg, vol.80, pp.138-180, 1986.

D. Fischer, P. Moeller, S. M. Thomas, T. J. Naucke, and C. Beierkuhnlein, Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change, PLoS Negl Trop Dis, vol.5, p.1407, 2011.