, Orphanet, issue.2, 2017.

F. B. Piel, A. P. Patil, R. E. Howes, O. A. Nyangiri, P. W. Gething et al., Global epidemiology of Sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates, Lancet, vol.381, p.23103089, 2013.

F. Baralle, Complete nucleotide sequence of the 5' noncoding region of human alpha-and beta-globin mRNA, Cell, vol.12, pp.1085-1095, 1977.

J. A. Browning, H. M. Staines, H. C. Robinson, T. Powell, J. C. Ellory et al., The effect of deoxygenation on whole-cell conductance of red blood cells from healthy individuals and patients with sickle cell disease, Blood, vol.109, p.17138828, 2007.

. Chies-j-a and N. B. Nardi, Sickle cell disease: a chronic inflammatory condition, Med Hypotheses, vol.57, p.11421623, 2001.

A. Solovey, L. Gui, S. Ramakrishnan, M. H. Steinberg, and R. P. Hebbel, Sickle cell anemia as a possible state of enhanced anti-apoptotic tone: survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells, Blood, vol.93, p.10339489, 1999.

N. Raghavachari, J. Barb, Y. Yang, P. Liu, K. Woodhouse et al., A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease, BMC Med Genomics, vol.5, p.22747986, 2012.

A. A. Desai, Z. Lei, N. Bahroos, M. Maienschein-cline, S. L. Saraf et al., Association of circulating transcriptomic profiles with mortality in sickle cell disease, Blood, vol.129, p.28373264, 2017.

. Schulze-a and J. Downward, Navigating gene expression using microarrays-a technology review, Nat Cell Biol, vol.3, p.11483980, 2001.

V. Trevino, F. Falciani, and H. A. Barrera-saldana, DNA microarrays: a powerful genomic tool for biomedical and clinical research, Mol Med, vol.13, p.17660860, 2007.

X. Li, R. J. Quigg, J. Zhou, W. Gu, N. Rao et al., Clinical utility of microarrays: current status, existing challenges and future outlook, Curr Genomics, vol.9, p.19506735, 2008.

J. Rung and A. Brazma, Reuse of public genome-wide gene expression data, Nat Rev Genet, vol.14, p.23269463, 2013.

J. K. Choi, U. Yu, S. Kim, and O. J. Yoo, Combining multiple microarray studies and modeling interstudy variation, Bioinformatics, 2003.

M. Smid, L. Dorssers, and G. Jenster, Venn Mapping: Clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes, Bioinformatics, vol.19, p.14594711, 2003.

G. Parmigiani, E. S. Garrett-mayer, R. Anbazhagan, and E. Gabrielson, A cross-study comparison of gene expression studies for the molecular classification of lung cancer, Clin Cancer Res, vol.10, p.15131026, 2004.

R. P. Deconde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen et al., Combining Results of Microarray Experiments: A Rank Aggregation Approach, Stat Appl Genet Mol Biol, vol.5, p.17049026, 2006.

E. Zintzaras and J. Ioannidis, Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays, Comput Biol Chem, vol.32, p.17988949, 2008.

X. Wang, D. D. Kang, K. Shen, C. Song, S. Lu et al., An r package suite for microarray metaanalysis in quality control, differentially expressed gene analysis and pathway enrichment detection, Bioinformatics, vol.28, p.22863766, 2012.

J. Xia, C. D. Fjell, M. L. Mayer, O. M. Pena, D. S. Wishart et al., INMEX-a web-based tool for integrative meta-analysis of expression data, Nucleic Acids Res, vol.41, p.23766290, 2013.

J. Xia, E. E. Gill, and R. Hancock, NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data, Nat Protoc, vol.10, p.25950236, 2015.

B. T. Mayne, T. Bianco-miotto, S. Buckberry, J. Breen, V. Clifton et al., Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans, Front Genet, vol.7, p.27790248, 2016.

M. Jalili, A. Salehzadeh-yazdi, S. Mohammadi, M. Yaghmaie, A. Ghavamzadeh et al., Metaanalysis of gene expression profiles in acute promyelocytic leukemia reveals involved pathways, Int J Hematol Stem Cell Res, vol.11, pp.1-12, 2017.

P. K. Jha, A. Vijay, A. Sahu, and M. Z. Ashraf, Comprehensive Gene expression meta-analysis and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders, Sci Rep, vol.6, p.27892526, 2016.

S. Likhitrattanapisal, J. Tipanee, and T. Janvilisri, Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma, Tumor Biol, vol.37, p.27448818, 2016.

N. Raghavachari, X. Xu, A. Harris, J. Villagra, C. Logun et al., Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease, Circulation, vol.115, p.17353439, 2007.

N. Raghavachari, X. Xu, P. J. Munson, and M. T. Gladwin, Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease, PLoS One, vol.4, p.19649296, 2009.

E. J. Van-beers, Y. Yang, N. Raghavachari, X. Tian, D. T. Allen et al., Iron, inflammation, and early death in adults with sickle cell disease, Circ Res, vol.116, p.25378535, 2015.

J. Quinlan, Y. Idaghdour, J. Goulet, E. Gbeha, T. De-malliard et al., Genomic architecture of sickle cell disease in West African children, Front Genet, vol.5, p.24592274, 2014.

D. D. Kang, E. Sibille, N. Kaminski, and G. C. Tseng, MetaQC: Objective quality control and inclusion/exclusion criteria for genomic meta-analysis, Nucleic Acids Res, vol.40, p.22116060, 2012.

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Stat Appl Genet Mol Biol, vol.3, p.16646809, 2004.

S. Lu, J. Li, C. Song, K. Shen, and G. C. Tseng, Biomarker detection in the integration of multiple multi-class genomic studies, Bioinformatics, vol.26, pp.333-340, 2009.

M. Krull, N. Voss, C. Choi, S. Pistor, A. Potapov et al., TRANSPATH??: An integrated database on signal transduction and a tool for array analysis, Nucleic Acids Research, pp.97-100, 2003.

E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang et al., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics, vol.14, p.23586463, 2013.

G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini et al., A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics, vol.25, p.19237447, 2009.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., A software Environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, p.14597658, 2003.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: Protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, p.25352553, 2015.

P. Chouvardas, G. Kollias, and C. Nikolaou, Inferring active regulatory networks from gene expression data using a combination of prior knowledge and enrichment analysis, BMC Bioinformatics, vol.17, p.27295045, 2016.

S. N. Mtatiro, T. Singh, H. Rooks, J. Mgaya, H. Mariki et al., Genome wide association study of fetal hemoglobin in sickle cell Anemia in Tanzania, PLoS One, vol.9, p.25372704, 2014.

J. Liu, E. Walter, D. Stenger, and D. Thach, Effects of Globin mRNA Reduction Methods on Gene Expression Profiles from Whole Blood, J Mol Diagnostics, vol.8, p.17065423, 2006.

D. C. Rees, T. N. Williams, and M. T. Gladwin, Sickle-cell disease. The Lancet, p.61029, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552602

R. P. Hebbel, Ischemia-reperfusion injury in sickle cell anemia: Relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematology/Oncology Clinics of North America, p.24589261, 2014.

C. C. Hoppe, Inflammatory mediators of endothelial injury in sickle cell disease. Hematology/Oncology Clinics of North America, p.24589266, 2014.

D. Zhang, C. Xu, D. Manwani, and P. S. Frenette, Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology, p.26758915, 2016.

C. Lanaro, C. F. Franco-penteado, D. M. Albuqueque, S. Saad, N. Conran et al., Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy, J Leukoc Biol, vol.85, p.19004988, 2009.

S. Sarray, L. R. Saleh, L. Saldanha, F. , A. Hh et al., Serum IL-6, IL-10, and TNF?? levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition, Cytokine, vol.72, p.25569375, 2015.

M. H. Qari, U. Dier, and S. A. Mousa, Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease, Clin Appl Thromb Hemost, vol.18, p.21949038, 2012.

N. Conran, C. F. Franco-penteado, and F. F. Costa, Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion, p.19205968, 2009.

A. Ramasamy, A. Mondry, C. C. Holmes, and D. G. Altman, Key issues in conducting a meta-analysis of gene expression microarray datasets, PLoS Medicine, p.18767902, 2008.

G. C. Tseng, D. Ghosh, and E. Feingold, Comprehensive literature review and statistical considerations for microarray meta-analysis, Nucleic Acids Research, p.22262733, 2012.

K. Kodama, K. Toda, S. Morinaga, S. Yamada, and A. J. Butte, Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice, Diabetes, vol.64, p.25294945, 2015.

K. Kodama, M. Horikoshi, K. Toda, S. Yamada, K. Hara et al., Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes, Proc Natl Acad Sci U S A, vol.109, p.22499789, 2012.

R. Peralta, A. Low, S. Booten, D. Zhou, A. Kim et al., Targeting KLF1 for the Treatment of Sickle Cell Disease Using Antisense Oligonucleotides, Blood, 2014.

A. E. Gallienne, H. Dréau, A. Schuh, J. M. Old, and S. Henderson, Ten novel mutations in the erythroid transcription factor KLF1 gene associated with increased fetal hemoglobin levels in adults, Haematologica, vol.97, p.22102705, 2012.

B. W. Hounkpe, M. Fiusa, M. P. Colella, L. Da-costa, O. Benatti-r-de et al., Role of innate immunity-triggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies, Sci Rep, vol.5, p.17822, 2015.

D. Chiabrando, S. Mercurio, and E. Tolosano, Heme and erythropoieis: More than a structural role. Haematologica, p.24881043, 2014.

A. U. Steinbicker and M. U. Muckenthaler, Out of balance-systemic iron homeostasis in iron-related disorders, p.23917168, 2013.

C. M. , L. C. , J. H. Das-t, and M. M. Dn-v, Heme concentration as a biomarker of sickle cell disease severity: Its role in steady-state and in crisis patients, p.975, 2015.

F. Wagener, A. Eggert, O. C. Boerman, W. Oyen, A. Verhofstad et al., Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase, Blood, vol.98, p.11535514, 2001.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, Heme degradation and vascular injury, Antioxid Redox Signal, vol.12, p.19697995, 2010.

K. T. Sawicki, M. Shang, R. Wu, H. C. Chang, A. Khechaduri et al., Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury, J Am Heart Assoc, vol.4, p.26231844, 2015.

B. Y. Owusu, Y. Hu, S. Ghosh, F. Tan, F. Sey et al., Determinants Of Heme-Oxygenase-1 Upregulation In Patients With Sickle Cell Disease, Blood, vol.122, pp.2235-2235, 2013.

J. D. Belcher, M. Young, C. Chen, J. Nguyen, K. Burhop et al., MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice, Blood, vol.122, p.23908468, 2013.

J. D. Belcher, H. Mahaseth, T. E. Welch, L. E. Otterbein, R. P. Hebbel et al., Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice, J Clin Invest, vol.116, p.16485041, 2006.

K. M. Kim, H. Pae, M. Zheng, R. Park, Y. Kim et al., Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress, Circ Res, vol.101, p.17823375, 2007.

J. A. Araujo, M. Zhang, and F. Yin, Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Frontiers in Pharmacology, p.22833723, 2012.

J. A. Araujo, HO-1 and CO: Fighters vs sickle cell disease? Blood, p.24113796, 2013.

X. Liu, K. J. Peyton, D. Ensenat, H. Wang, A. I. Schafer et al., Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival, J Biol Chem, vol.280, p.15546873, 2005.

. Nath-k-a, J. P. Grande, J. J. Haggard, J. Croatt-a, Z. S. Katusic et al., Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease, Am J Pathol, vol.158, pp.893-903, 2001.

H. L. Pahl, Activators and target genes of Rel/NF-kappaB transcription factors, Oncogene, vol.18, p.10602461, 1999.

B. Vingert, M. Tamagne, M. Desmarets, S. Pakdaman, R. Elayeb et al., Partial dysfunction of Treg activation in sickle cell disease, Am J Hematol, vol.89, p.24779034, 2014.

E. Balandya, T. Reynolds, S. Obaro, and J. Makani, Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses, American Journal of Hematology, p.27237467, 2016.

J. Makani, J. Mgaya, E. Balandya, K. Msami, D. Soka et al., Bacteraemia in sickle cell anaemia is associated with low haemoglobin: A report of 890 admissions to a tertiary hospital in Tanzania, Br J Haematol, vol.171, p.26084722, 2015.

M. Ramakrishnan, ?. Mo, J. C. ?si, K. P. Klugman, J. Iglesias et al., Increased risk of invasive bacterial infections in African people with sickle-cell disease: A systematic review and meta-analysis. The Lancet Infectious Diseases, p.20417415, 2010.

A. B. Glassman, D. V. Deas, F. S. Berlinsky, S. C. Bc-;-ann-o-f-clin-l-a-n-d-lab, and . Ie-n-c-e, Lymphocyte blast transformation and peripheral lymphocyte percentages in patients with sickle cell disease, vol.10, 1980.

H. Ji, F. Rintelen, C. Waltzinger, B. Meier, D. Bilancio et al., Inactivation of PI3K-gamma and PI3Kdelta distorts T-cell development and causes multiple organ inflammation, Blood, vol.110, p.17626838, 2007.

D. A. Fruman and L. C. Cantley, Phosphoinositide 3-kinase in immunological systems, Semin Immunol, vol.14, p.11884226, 2002.

J. Wehrle, T. S. Seeger, S. Schwemmers, D. Pfeifer, A. Bulashevska et al., Transcription factor nuclear factor erythroid-2 mediates expression of the cytokine interleukin 8, a known predictor of inferior outcome in patients with myeloproliferative Neoplasms, Haematologica, vol.98, p.23445878, 2013.

K. B. Kaufmann, A. Gründer, T. Hadlich, J. Wehrle, M. Gothwal et al., A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2, J Exp Med, vol.209, p.22231305, 2012.

H. Ozdogu, C. Boga, O. Sozer, N. Sezgin, E. Kizilkilic et al., The apoptosis of blood polymorphonuclear leukocytes in sickle cell disease, Cytom Part B-Clin Cytom, vol.72, pp.276-280, 2007.

L. Racioppi, P. K. Noeldner, F. Lin, S. Arvai, and A. R. Means, Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses, J Biol Chem, vol.287, p.22334678, 2012.