A. S. Almeida, P. M. Lago, N. Boechat, R. C. Huard, L. C. Lazzarini et al., Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity, J. Immunol, vol.183, pp.718-731, 2009.

P. Andersen, A. B. Andersen, A. L. Sørensen, and S. Nagai, Recall of longlived immunity to Mycobacterium tuberculosis infection in mice, J. Immunol, vol.154, pp.3359-3372, 1995.

M. Benoit, B. Desnues, and J. L. Mege, Macrophage polarization in bacterial infections, J. Immunol, vol.181, pp.3733-3739, 2008.

V. Boggaram, K. R. Gottipati, X. Wang, and B. Samten, Early secreted antigenic target of 6kDa (ESAT-6) protein of Mycobacterium tuberculosis induces interleukin-8 (IL-8) expression in lung epithelial cells via protein kinase signaling and reactive oxygen species, J. Biol. Chem, vol.288, pp.25500-25511, 2013.

G. Cairo, S. Recalcati, A. Mantovani, and M. Locati, Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype, Trends Immunol, vol.32, pp.241-247, 2011.

C. J. Cambier, S. Falkow, R. , and L. , Host evasion and exploitation schemes of Mycobacterium tuberculosis, Cell, vol.159, pp.1497-1509, 2014.

H. H. Choi, D. M. Shin, G. Kang, K. H. Kim, J. B. Park et al., Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis, FEBS Lett, vol.584, pp.2445-2454, 2010.

J. M. Davis, R. , and L. , The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, pp.37-49, 2009.

J. Day, A. Friedman, and L. S. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.11246-11251, 2009.

V. Deretic, I. Vergne, J. Chua, S. Master, S. B. Singh et al., Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV, Cell. Microbiol, vol.6, pp.999-1009, 2004.
DOI : 10.1111/j.1462-5822.2004.00449.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1462-5822.2004.00449.x

S. C. Derrick, M. , and S. L. , The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression, Cell. Microbiol, vol.9, pp.1547-1555, 2007.

H. Dong, W. Jing, Z. Runpeng, X. Xuewei, M. Min et al., ESAT6 inhibits autophagy flux and promotes BCG proliferation through mTOR, 2016.
DOI : 10.1016/j.bbrc.2016.06.042

, Biochem. Biophys. Res. Commun, vol.477, pp.195-201

S. Ehrt, D. Schnappinger, S. Bekiranov, J. Drenkow, S. Shi et al., Reprogramming of the macrophage transcriptome in response to interferon-? and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase, J. Exp. Med, vol.194, pp.1123-1140, 2001.

J. L. Flynn, J. Chan, L. , and P. L. , Macrophages and control of granulomatous inflammation in tuberculosis, Mucosal Immunol, vol.4, pp.271-278, 2011.

S. Gordon and F. O. Martinez, Alternative activation of macrophages: mechanism and functions, Immunity, vol.32, pp.593-604, 2010.

A. Gratchev, J. Kzhyshkowska, K. Köthe, I. Muller-molinet, S. Kannookadan et al., Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals, Immunobiology, vol.211, pp.473-486, 2006.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog, vol.7, p.1002251, 2011.

A. Grover and A. A. Izzo, BAT3 regulates Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis of macrophages, PLoS ONE, vol.7, p.40836, 2012.

M. Haoues, A. Refai, A. Mallavialle, M. R. Barbouche, N. Laabidi et al., Forkhead box O3 (FOXO3) transcription factor mediates apoptosis in BCG-infected macrophages, Cell. Microbiol, vol.16, pp.1378-1390, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01060538

D. Houben, C. Demangel, J. Van-ingen, J. Perez, L. Baldeón et al., ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell. Microbiol, vol.14, pp.1287-1298, 2012.

Z. Huang, Q. Luo, Y. Guo, J. Chen, G. Xiong et al., Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro, PLoS ONE, vol.10, 2015.

R. Kumar, P. Halder, S. K. Sahu, M. Kumar, M. Kumari et al., Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis, Cell. Microbiol, vol.14, pp.1620-1631, 2012.

G. Lugo-villarino, D. Hudrisier, A. Benard, and O. Neyrolles, Emerging trends in the formation and function of tuberculosis granulomas, Front. Immunol, vol.3, p.405, 2013.

G. Lugo-villarino, C. Vérollet, I. Maridonneau-parini, and O. Neyrolles, Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV, Front. Immunol, vol.2, p.43, 2011.

L. H. Ly, M. I. Russell, and D. N. Mcmurray, Microdissection of the cytokine milieu of pulmonary granulomas from tuberculous guinea pigs, Cell. Microbiol, vol.9, pp.1127-1136, 2007.

Y. Ma, V. Keil, and J. Sun, Characterization of Mycobacterium tuberculosis EsxA membrane insertion: roles of N-and C-terminal flexible arms and central helix-turn-helix motif, J. Biol. Chem, vol.290, pp.7314-7322, 2015.

L. Majlessi, P. Brodin, R. Brosch, M. J. Rojas, H. Khun et al., Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system, J. Immunol, vol.15, pp.3570-3579, 2005.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

S. Marino, N. A. Cilfone, J. T. Mattila, J. J. Linderman, J. L. Flynn et al., Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection, Infect. Immun, vol.83, pp.324-338, 2015.

F. O. Martinez, G. , and S. , The M1 and M2 paradigm of macrophage activation: time for reassessment, vol.6, p.13, 1000.

B. B. Mishra, P. Moura-alves, A. Sonawane, N. Hacohen, G. Griffiths et al., Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome, Cell. Microbiol, vol.12, pp.1046-1063, 2010.

C. J. Morgan, Use of proper statistical techniques for research studies with small samples, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.313, pp.873-877, 2017.

J. Muller and T. Tjardes, Modeling the cytokine network in vitro and in vivo, J. Theoret. Med, vol.5, pp.93-110, 2003.

P. J. Murray, Macrophage polarization, Annu. Rev. Physiol, vol.79, pp.541-566, 2017.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, pp.14-20, 2014.

V. Nagabhushanam, A. Solache, L. M. Ting, C. J. Escaron, J. Y. Zhang et al., Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-?, J. Immunol, vol.171, pp.4750-4757, 2003.

I. M. Orme, A new unifying theory of the pathogenesis of tuberculosis, Tuberculosis, vol.94, pp.8-14, 2014.

S. K. Pathak, S. Basu, K. K. Basu, A. Banerjee, S. Pathak et al., Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages, Nat. Immunol, vol.8, pp.610-618, 2007.

X. Peng and J. Sun, Mechanism of ESAT-6 membrane interaction and its roles in pathogenesis of Mycobacterium tuberculosis, Toxicon, vol.116, pp.29-34, 2016.

A. P. Pessanha, R. A. Martins, A. L. Mattos-guaraldi, A. Vianna, and L. O. Moreira, Arginase-1 expression in granulomas of tuberculosis patients, FEMS. Immunol. Med. Microbiol, vol.66, pp.265-268, 2012.

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, p.1000204, 2008.

B. Raju, Y. Hoshino, I. Belitskaya-lévy, R. Dawson, S. Ress et al., Gene expression profiles of bronchoalveolar cells in pulmonary TB, Tuberculosis, vol.88, pp.39-51, 2008.

E. F. Redente, D. M. Higgins, L. D. Dwyer-nield, I. M. Orme, M. Gonzalezjuarrero et al., Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation, J. Leukoc. Biol, vol.88, pp.159-168, 2010.

A. Refai, M. Haoues, H. Othman, M. R. Barbouche, P. Moua et al., Two distinct conformational states of Mycobacterium tuberculosis virulent factor early secreted antigenic target 6kDa are behind the discrepancy around its biological functions, FEBS J, vol.282, pp.4114-4129, 2015.

D. G. Russell, P. J. Cardona, M. J. Kim, S. Allain, A. et al., Foamy macrophages and the progression of the human tuberculosis granuloma, Nat. Immunol, vol.10, pp.943-948, 2009.

N. J. Salkind, Encyclopedia of Measurement and Statistics, vol.1, 2007.

B. Samten, X. Wang, and P. F. Barnes, Immune regulatory activities of early secreted antigenic target of 6-kD protein of Mycobacterium tuberculosis and implications for tuberculosis vaccine design, Tuberculosis, vol.91, pp.114-118, 2011.

A. Sica, M. Erreni, P. Allavena, and C. Porta, Macrophage polarization in pathology, Cell. Mol. Life Sci, vol.72, pp.4111-4126, 2015.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest, vol.122, pp.787-795, 2012.

R. Simeone, A. Bobard, J. Lippmann, W. Bitter, L. Majlessi et al., Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death, PLoS Pathog, vol.8, p.1002507, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899479

V. Singh, S. Jamwal, R. Jain, P. Verma, R. Gokhale et al., Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype, Cell Host Microbe, vol.12, pp.669-681, 2012.

V. Singh, C. Kaur, V. K. Chaudhary, K. V. Rao, C. et al., M. tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation, Sci. Rep, vol.5, p.12906, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378545

A. L. Sørensen, S. Nagai, G. Houen, P. Andersen, and A. B. Andersen, Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis, Infect. Immun, vol.63, pp.1710-1717, 1995.

G. Sreejit, A. Ahmed, N. Parveen, V. Jha, V. L. Valluri et al., The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta2-microglobulin (?2M) affecting antigen presentation function of macrophage, PLoS Pathog, vol.10, p.1004446, 2014.

P. E. Van-den-steen, B. Dubois, I. Nelissen, P. M. Rudd, R. A. Dwek et al., Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade, Crit. Rev. Biochem. Mol. Biol, vol.48, pp.375-536, 2008.

A. B. Van-oud-alblas and R. Van-furth, Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state, J. Exp. Med, vol.149, pp.1504-1518, 1979.

H. E. Volkman, T. C. Pozos, J. Zheng, J. M. Davis, J. F. Rawls et al., Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium, Science, vol.327, pp.466-469, 2010.

N. Wang, H. Liang, and K. Zen, Molecular mechanisms that influence the macrophage m1-m2 polarization balance, Front. Immunol, vol.5, p.614, 2014.

, Bending the Curve-Ending TB, Annual Report. World Health Organization, 2017.

S. Yang, F. Li, S. Jia, K. Zhang, W. Jiang et al., Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction, Cell. Physiol. Biochem, vol.35, pp.1276-1288, 2015.

X. Yu and J. Xie, Roles and underlying mechanisms of ESAT-6 in the context of Mycobacterium tuberculosis-host interaction from a systems biology perspective, Cell. Signal, vol.24, pp.1841-1846, 2012.

L. Zhang, H. Zhang, Y. Zhao, F. Mao, J. Wu et al., Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages, DNA Cell Biol, vol.31, pp.171-179, 2012.