B. Delatte, L'interaction TET-OGT facilite la transcription en régulant la méthylation de l'histone H, Med Sci (Paris), vol.30, pp.619-640, 2014.
DOI : 10.1051/medsci/20143006007

URL : https://www.medecinesciences.org/articles/medsci/pdf/2014/07/medsci2014306-7p619.pdf

S. J. Song, K. Ito, and U. Ala, The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation, Cell Stem Cell, vol.13, pp.87-101, 2013.

M. Ko, J. An, and H. S. Bandukwala, Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX, Nature, vol.497, pp.122-128, 2013.

Y. Arioka, A. Watanabe, and K. Saito, Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins, PLoS One, vol.7, p.45031, 2012.

M. E. Figueroa, O. Abdel-wahab, and C. Lu, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell, vol.18, pp.553-67, 2010.

K. Blaschke, K. T. Ebata, and M. M. Karimi, Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells, Nature, vol.500, pp.222-228, 2013.

M. M. Dawlaty, K. Ganz, and B. E. Powell, Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development, Cell Stem Cell, vol.9, pp.166-75, 2011.

C. Quivoron, L. Couronne, D. Valle, and V. , TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis, Cancer Cell, vol.20, pp.25-38, 2011.

T. P. Gu, F. Guo, and H. Yang, The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes, Nature, vol.477, pp.606-616, 2011.

M. M. Dawlaty, A. Breiling, and T. Le, Combined deficiency of tet1 and tet2 causes epigenetic abnormalities but is compatible with postnatal development, Dev Cell, vol.24, pp.310-333, 2013.

M. M. Dawlaty, A. Breiling, and T. Le, Loss of Tet enzymes compromises proper differentiation of embryonic stem cells, Dev Cell, vol.29, pp.102-113, 2014.

T. Langlois, B. Da-costa-reis-monte-mor, and G. Lenglet, TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells, Stem Cells, vol.32, pp.2084-97, 2014.

S. A. Jackson and R. Sridharan, The nexus of Tet1 and the pluripotency network, Cell Stem Cell, vol.12, pp.387-395, 2013.

T. Wang, H. Wu, and Y. Li, Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency, Nat Cell Biol, vol.15, pp.700-711, 2013.

Y. Gao, J. Chen, and K. Li, Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming, Cell Stem Cell, vol.12, pp.453-69, 2013.

E. M. Kallin, J. Rodriguez-ubreva, and J. Christensen, Tet2 facilitates the derepression of myeloid target genes during CEBPalpha-induced transdifferentiation of pre-B cells, Mol Cell, vol.48, pp.266-76, 2012.

F. Delhommeau, S. Dupont, D. Valle, and V. , Mutation in TET2 in myeloid cancers, N Engl J Med, vol.360, pp.2289-301, 2009.

L. Cimmino, O. Abdel-wahab, and R. L. Levine, TET family proteins and their role in stem cell differentiation and transformation, Cell Stem Cell, vol.9, pp.193-204, 2011.

T. Pedrazzini, Le coeur des ARN non codants : un long chemin à découvrir, Med Sci (Paris), vol.31, pp.261-268, 2015.

R. Ono, T. Taki, and T. Taketani, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23), Cancer Res, vol.62, pp.4075-80, 2002.

L. Hu, Z. Li, and J. Cheng, Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation, Cell, vol.155, pp.1545-55, 2013.

M. Tahiliani, K. P. Koh, and Y. Shen, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

J. U. Guo, Y. Su, and C. Zhong, Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain, Cell, vol.145, pp.423-457, 2011.

S. Cortellino, J. Xu, and M. Sannai, Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair, Cell, vol.146, pp.67-79, 2011.

S. Morera, I. Grin, and A. Vigouroux, Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA, Nucleic Acids Res, vol.40, pp.9917-9943, 2012.

H. Wu and Y. Zhang, Reversing DNA methylation: mechanisms, genomics, and biological functions, Cell, vol.156, pp.45-68, 2014.

T. Pfaffeneder, F. Spada, and M. Wagner, Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA, Nat Chem Biol, vol.10, pp.574-81, 2014.

K. Williams, J. Christensen, and M. T. Pedersen, TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.473, pp.343-351, 2011.

Y. Huang, L. Chavez, and X. Chang, Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells, Proc Natl Acad Sci, vol.111, pp.1361-1367, 2014.

K. Pulakanti, L. Pinello, and C. Stelloh, Enhancer transcribed RNAs arise from hypomethylated, Tetoccupied genomic regions, Epigenetics, vol.8, pp.1303-1323, 2013.

E. Pronier, A. C. Mokrani, and H. , Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulo-monocytic differentiation of human hematopoietic progenitors, Blood, vol.118, pp.2551-2556, 2011.

W. A. Pastor, L. Aravind, and A. Rao, TETonic shift: biological roles of TET proteins in DNA demethylation and transcription, Nat Rev Mol Cell Biol, vol.14, pp.341-56, 2013.

C. Lafaye, E. Barbier, and A. Miscioscia, DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation, Biochem Biophys Res Commun, vol.446, pp.341-347, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01994537