G. S. Gorman, P. F. Chinnery, S. Dimauro, M. Hirano, Y. Koga et al., Mitochondrial diseases, Nat. Rev. Dis. Prim, 2016.

P. Kaufmann, K. Engelstad, Y. Wei, R. Kulikova, M. Oskoui et al., Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype, Neurology, vol.77, 1965.

H. E. Steele, R. Horvath, J. J. Lyon, and P. F. Chinnery, Monitoring clinical progression with mitochondrial disease biomarkers, Brain, vol.140, pp.2530-2540, 2017.
DOI : 10.1093/brain/awx168

URL : https://academic.oup.com/brain/article-pdf/140/10/2530/24174128/awx168.pdf

K. Strimbu and J. A. Tavel, What are biomarkers?, Curr. Opin. HIV AIDS, vol.5, pp.463-466, 2010.
DOI : 10.1097/coh.0b013e32833ed177

J. Finsterer, Biomarkers of peripheral muscle fatigue during exercise, BMC Musculoskelet. Disord, vol.13, 2012.

J. Finsterer and V. E. Drory, Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue, BMC Musculoskelet. Disord, vol.17, 2016.
DOI : 10.1186/s12891-016-0869-2

URL : https://bmcmusculoskeletdisord.biomedcentral.com/track/pdf/10.1186/s12891-016-0869-2

M. Pennuto, L. Greensmith, P. F. Pradat, G. Sorarù, S. European et al., 210th ENMC International Workshop: Research and Clinical Management of Patients with Spinal and Bulbar Muscular Atrophy, vol.25, pp.802-812, 2015.

J. Finsterer and S. Zarrouk-mahjoub, Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders, Neuropsychiatr. Dis. Treat, vol.13, pp.2569-2579, 2017.
DOI : 10.2147/ndt.s149067

URL : https://hal.archives-ouvertes.fr/pasteur-02056219

R. D. Pitceathly, J. M. Morrow, C. D. Sinclair, C. Woodward, M. G. Sweeney et al., Extra-ocular muscle MRI in genetically-defined mitochondrial disease, Eur. Radiol, vol.26, pp.130-137, 2016.
DOI : 10.1007/s00330-015-3801-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs00330-015-3801-5.pdf

C. Yu-wai-man, F. E. Smith, M. J. Firbank, G. Guthrie, S. Guthrie et al., Extraocular muscle atrophy and central nervous system involvement in chronic progressive external ophthalmoplegia, PLoS ONE, vol.8, 2013.
DOI : 10.1371/journal.pone.0075048

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0075048&type=printable

J. Finsterer and S. Zarrouk-mahjoub, Cerebral imaging in pediatric mitochondrial disorders, J. Neurol. Sci, 2017.
DOI : 10.1177/1971400918786054

J. Finsterer, Central nervous system imaging in mitochondrial disorders, Can. J. Neurol. Sci, vol.36, pp.143-153, 2009.
DOI : 10.1017/s0317167100006508

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/4B9D9BCB7A9F8B055794D094CC95094D/S0317167100006508a.pdf/div-class-title-central-nervous-system-imaging-in-mitochondrial-disorders-div.pdf

A. Florian, A. Ludwig, B. Stubbe-dräger, M. Boentert, P. Young et al., Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy, J. Cardiovasc. Magn. Reson, vol.17, 2015.

S. Golla, J. Ren, C. R. Malloy, and J. M. Pascual, Intramyocellular lipid excess in the mitochondrial disorder MELAS: MRS determination at 7T. Neurol

C. Debrosse, R. P. Nanga, N. Wilson, K. D'aquilla, M. Elliott et al., Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders, JCI Insight, vol.1, 2016.

A. H. Liu, F. N. Niu, L. L. Chang, B. Zhang, Z. Liu et al., High cytochrome c oxidase expression links to severe skeletal energy failure by 31 P-MRS spectroscopy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, CNS Neurosci. Ther, vol.20, pp.509-514, 2014.

N. Weiduschat, P. Kaufmann, X. Mao, K. M. Engelstad, V. Hinton et al., Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers, Neurology, vol.82, pp.798-805, 2014.
DOI : 10.1212/wnl.0000000000000169

URL : http://europepmc.org/articles/pmc3945652?pdf=render

C. S. Chi, H. F. Lee, C. R. Tsai, W. S. Chen, J. N. Tung et al., Lactate peak on brain MRS in children with syndromic mitochondrial diseases, J. Chin. Med. Assoc, vol.74, pp.305-309, 2011.

T. Nariai, K. Ohno, Y. Ohta, K. Hirakawa, K. Ishii et al., Discordance between cerebral oxygen and glucose metabolism, and hemodynamics in a mitochondrial encephalomyopathy, lactic acidosis, and strokelike episode patient, J. Neuroimaging, vol.11, pp.325-329, 2001.
DOI : 10.1111/j.1552-6569.2001.tb00057.x

K. Haginoya, T. Kaneta, N. Togashi, N. Hino-fukuyo, T. Kobayashi et al., FDG-PET study of patients with Leigh syndrome, J. Neurol. Sci, vol.362, pp.309-313, 2016.
DOI : 10.1016/j.jns.2016.02.008

R. S. Frackowiak, S. Herold, R. K. Petty, and J. A. Morgan-hughes, The cerebral metabolism of glucose and oxygen measured with positron tomography in patients with mitochondrial diseases, Brain, vol.111, pp.1009-1024, 1988.

M. M. Lindroos, R. J. Borra, R. Parkkola, S. M. Virtanen, V. Lepomäki et al., Cerebral oxygen and glucose metabolism in patients with mitochondrial m.3243A>G mutation, Brain, vol.132, pp.3274-3284, 2009.
DOI : 10.1093/brain/awp259

URL : https://academic.oup.com/brain/article-pdf/132/12/3274/17343464/awp259.pdf

F. A. Harms, S. I. Bodmer, N. J. Raat, and E. G. Mik, Cutaneous mitochondrial respirometry: Non-invasive monitoring of mitochondrial function, J. Clin. Monit. Comput, vol.29, pp.509-519, 2015.
DOI : 10.1007/s10877-014-9628-9

F. A. Harms, R. J. Stolker, and E. G. Mik, Cutaneous respirometry as novel technique to monitor mitochondrial function: A feasibility study in healthy volunteers, PLoS ONE, vol.11, p.159544, 2016.

A. M. Hall, A. Vilasi, I. Garcia-perez, M. Lapsley, C. L. Alston et al., The urinary proteome and metabonome differ from normal in adults with mitochondrial disease, Kidney Int, vol.87, pp.610-622, 2015.

J. M. Chao-de-la-barca, G. Simard, P. Amati-bonneau, Z. Safiedeen, D. Prunier-mirebeau et al., The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress, Brain, vol.139, pp.2864-2876, 2016.

C. Tranchant and M. Anheim, Movement disorders in mitochondrial diseases, Rev. Neurol, vol.172, pp.524-529, 2016.

N. Rasool, S. Lessell, and D. M. Cestari, Leber Hereditary Optic Neuropathy: Bringing the Lab to the Clinic, Semin. Ophthalmol, vol.31, pp.107-116, 2016.
DOI : 10.3109/08820538.2015.1115251

A. Morovat, G. Weerasinghe, V. Nesbitt, M. Hofer, T. Agnew et al., Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice, J. Clin. Med, vol.6, 2017.

S. Koene, P. De-laat, D. H. Van-tienoven, D. Vriens, A. M. Brandt et al., Serum FGF21 levels in adult m.3243A>G carriers: Clinical implications, Neurology, vol.83, pp.125-133, 2014.
DOI : 10.1212/wnl.0000000000000578

A. Suomalainen, J. M. Elo, K. H. Pietiläinen, A. H. Hakonen, K. Sevastianova et al., FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study, Lancet Neurol, vol.10, pp.806-818, 2011.
DOI : 10.1016/s1474-4422(11)70155-7

J. M. Lehtonen, S. Forsström, E. Bottani, C. Viscomi, O. R. Baris et al., FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders, Neurology, vol.87, pp.2290-2299, 2016.
DOI : 10.1212/wnl.0000000000003374

URL : https://n.neurology.org/content/neurology/87/22/2290.full.pdf

S. Meseguer, A. Martínez-zamora, E. García-arumí, A. L. Andreu, and M. E. Armengod, The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome, Hum. Mol. Genet, vol.24, pp.167-184, 2015.

S. Balasubramaniam, L. G. Riley, D. Bratkovic, D. Ketteridge, N. Manton et al., Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS 1 deficiency, J. Inherit. Metab. Dis, vol.40, pp.745-747, 2017.

E. Carmi, C. Defossez, G. Morin, S. Fraitag, C. Lok et al., MELAS syndrome (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes), Ann. Dermatol. Venereol, vol.128, pp.1031-1035, 2001.

A. M. James, Y. H. Wei, C. Y. Pang, and M. P. Murphy, Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations, Biochem. J, vol.318, pp.401-407, 1996.

T. D. Jeppesen, M. Schwartz, D. B. Olsen, F. Wibrand, T. Krag et al., Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy, Brain, vol.129, pp.3402-3412, 2006.

T. D. Jeppesen, M. Schwartz, A. L. Frederiksen, F. Wibrand, D. B. Olsen et al., Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation, Arch. Neurol, vol.63, pp.1701-1706, 2006.

J. Finsterer and E. Milvay, Stress lactate in mitochondrial myopathy under constant, unadjusted workload, Eur. J. Neurol, vol.11, pp.811-816, 2004.
DOI : 10.1111/j.1468-1331.2004.00859.x

J. Finsterer and E. Milvay, Lactate stress testing in 155 patients with mitochondriopathy. Can, J. Neurol. Sci, vol.29, pp.49-53, 2002.
DOI : 10.1017/s0317167100001712

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3B96461A67A5223A5D1D9DB1AE6DD231/S0317167100001712a.pdf/div-class-title-lactate-stress-testing-in-155-patients-with-mitochondriopathy-div.pdf

D. Srikun, A. E. Albers, C. I. Nam, A. T. Iavarone, and C. J. Chang, Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling, J. Am. Chem. Soc, vol.132, pp.4455-4465, 2010.