P. Dion, V. Shanmugam, C. Gaspar, C. Messaed, I. Meijer et al., Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice, Neurobiol. Dis, vol.18, pp.528-536, 2005.

V. Shanmugam, P. Dion, D. Rochefort, J. Laganière, B. Brais et al., PABP2 polyalanine tract expansion causes intranuclear inclusions in oculopharyngeal muscular dystrophy, Ann. Neurol, vol.48, pp.798-802, 2000.

F. M. Tomé and M. Fardeau, Nuclear inclusions in oculopharyngeal dystrophy, Acta Neuropathol, vol.49, pp.85-87, 1980.

B. Brais, J. P. Bouchard, Y. G. Xie, D. L. Rochefort, N. Chrétien et al., Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy, Nat. Genet, vol.18, pp.164-167, 1998.

B. Brais, Y. G. Xie, M. Sanson, K. Morgan, J. Weissenbach et al., The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2-q13, Hum. Mol. Genet, vol.4, pp.429-434, 1995.

A. Abu-baker, N. Kharma, C. Neri, S. Rasheed, P. A. Dion et al., Current targeted therapeutic strategies for oculopharyngeal muscular dystrophy: from pharmacological to RNA replacement and gene editing therapies, Int. J. Clin. Neurosci. Ment. Health, vol.3, p.6, 2016.

A. Abu-baker, C. Messaed, J. Laganiere, C. Gaspar, B. Brais et al., Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy, Hum. Mol. Genet, vol.12, pp.2609-2623, 2003.

H. Catoire, M. Y. Pasco, A. Abu-baker, S. Holbert, C. Tourette et al., Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1, Hum. Mol. Genet, vol.17, pp.2108-2117, 2008.

A. Abu-baker, A. Parker, S. Ramalingam, J. Laganiere, B. Brais et al., Valproic acid is protective in cellular and worm models of oculopharyngeal muscular dystrophy, Neurology, vol.91, pp.551-561, 2018.

A. Abu-baker, J. Laganiere, R. Gaudet, D. Rochefort, B. Brais et al., Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/b-catenin pathway, 2013.

X. Fan, P. Dion, J. Laganiere, B. Brais, and G. A. Rouleau, Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death, Hum. Mol. Genet, vol.10, pp.2341-2351, 2001.

A. Abu-baker, S. Laganiere, X. Fan, J. Laganiere, B. Brais et al., Cytoplasmic targeting of mutant poly(A)-binding protein nuclear 1 suppresses protein aggregation and toxicity in oculopharyngeal muscular dystrophy, Traffic, vol.6, pp.766-779, 2005.

Q. Wang, D. D. Mosser, and J. Bag, Induction of HSP70 expression and recruitment of HSC70 and HSP70 in the nucleus reduce aggregation of a polyalanine expansion mutant of PABPN1 in HeLa cells, Hum. Mol. Genet, vol.14, pp.3673-3684, 2005.

A. Chartier, V. Raz, E. Sterrenburg, C. T. Verrips, S. M. Van-der-maarel et al., Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo, Hum. Mol. Genet, vol.18, pp.1849-1859, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00399030

P. Verheesen, A. De-kluijver, S. Van-koningsbruggen, M. De-brij, H. J. De-haard et al., Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody, Hum. Mol. Genet, vol.15, pp.105-111, 2006.

J. E. Davies, C. Rose, S. Sarkar, and D. C. Rubinsztein, Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy, Sci. Transl. Med, vol.2, pp.34-40, 2010.

J. E. Davies, S. Sarkar, and D. C. Rubinsztein, Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy, Hum. Mol. Genet, vol.15, pp.23-31, 2006.

J. E. Davies, L. Wang, L. Garcia-oroz, L. J. Cook, C. Vacher et al., Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice, Nat. Med, vol.11, pp.672-677, 2005.

S. Périé, C. Trollet, V. Mouly, V. Vanneaux, K. Mamchaoui et al., Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study, Mol. Ther, vol.22, pp.219-225, 2014.

A. Malerba, P. Klein, H. Bachtarzi, S. A. Jarmin, G. Cordova et al., PABPN1 gene therapy for oculopharyngeal muscular dystrophy, Nat. Commun, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01959996

Y. P. Bao, L. J. Cook, D. O'donovan, E. Uyama, and D. C. Rubinsztein, , 2002.

. Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy, J. Biol. Chem, vol.277, pp.12263-12269

N. Barbezier, A. Chartier, Y. Bidet, A. Buttstedt, C. Voisset et al., Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy, EMBO Mol. Med, vol.3, pp.35-49, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00575087

Z. Argov, I. Gliko-kabir, B. Brais, Y. Caraco, and D. Megiddo, Intravenous Trehalose Improves Dysphagia and Muscle Function in Oculopharyngeal Muscular Dystrophy (OPMD): Preliminary Results of 24 Weeks Open Label Phase 2 Trial (S28.004), Neurology, vol.86, 2016.

Y. C. Zhang, M. M. Taylor, W. K. Samson, and M. I. Phillips, Antisense inhibition: oligonucleotides, ribozymes, and siRNAs, Methods Mol. Med, vol.106, pp.11-34, 2005.

L. Citti and G. Rainaldi, Synthetic hammerhead ribozymes as therapeutic tools to control disease genes, Curr. Gene Ther, vol.5, pp.11-24, 2005.

A. Ren, R. Micura, and D. J. Patel, Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes, Curr. Opin. Chem. Biol, vol.41, pp.71-83, 2017.

L. A. Macfarlane and P. R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer, Curr. Genomics, vol.11, pp.537-561, 2010.

M. Montano, MicroRNAs: miRRORS of health and disease, Transl. Res, vol.157, pp.157-162, 2011.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

S. Jonas and E. Izaurralde, Towards a molecular understanding of microRNA-mediated gene silencing, Nat. Rev. Genet, vol.16, pp.421-433, 2015.

N. Kharma, L. Varin, A. Abu-baker, J. Ouellet, S. Najeh et al., Automated design of hammerhead ribozymes and validation by targeting the PABPN1 gene transcript, Nucleic Acids Res, vol.44, p.39, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01351212

S. C. Blumen, A. D. Korczyn, H. Lavoie, S. Medynski, J. Chapman et al., , 2000.

, Oculopharyngeal MD among Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene, Neurology, vol.55, pp.1267-1270

M. Rodríguez, C. Camejo, B. Bertoni, C. Braida, M. M. Rodríguez et al., GCG)11 founder mutation in the PABPN1 gene of OPMD Uruguayan families, Neuromuscul. Disord, vol.15, pp.185-190, 2005.

D. Rivera, H. Mejia-lopez, E. N. Pompa-mera, C. Villanueva-mendoza, A. Navacastañeda et al., Two different PABPN1 expanded alleles in a Mexican population with oculopharyngeal muscular dystrophy arising from independent founder effects, Br. J. Ophthalmol, vol.92, pp.998-1002, 2008.

A. V. Marusin, K. Kurtanov, N. R. Maksimova, M. G. Svarovskaya, and V. A. Stepanov, Genetika, vol.52, pp.376-384, 2016.

R. L. Boudreau, I. Martins, and B. L. Davidson, Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo, Mol. Ther, vol.17, pp.169-175, 2009.

J. E. Davies, S. Sarkar, and D. C. Rubinsztein, Wild-type PABPN1 is antiapoptotic and reduces toxicity of the oculopharyngeal muscular dystrophy mutation, Hum. Mol. Genet, vol.17, pp.1097-1108, 2008.

E. Wahle, A. Lustig, P. Jenö, and P. Maurer, Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides, J. Biol. Chem, vol.268, pp.2937-2945, 1993.

C. Messaed, P. A. Dion, A. Abu-baker, D. Rochefort, J. Laganiere et al., Soluble expanded PABPN1 promotes cell death in oculopharyngeal muscular dystrophy, Neurobiol. Dis, vol.26, pp.546-557, 2007.

S. Krause, S. Fakan, K. Weis, and E. Wahle, Immunodetection of poly(A) binding protein II in the cell nucleus, Exp. Cell Res, vol.214, pp.75-82, 1994.

R. Kole, A. R. Krainer, and S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides, Nat. Rev. Drug Discov, vol.11, pp.125-140, 2012.
DOI : 10.1038/nrd3625

URL : http://europepmc.org/articles/pmc4743652?pdf=render

C. Li, P. Xiao, S. J. Gray, M. S. Weinberg, and R. J. Samulski, Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins, Proc. Natl. Acad. Sci. USA, vol.108, pp.14258-14263, 2011.

L. A. Phylactou, M. W. Kilpatrick, and M. J. Wood, Ribozymes as therapeutic tools for genetic disease, Hum. Mol. Genet, vol.7, pp.1649-1653, 1998.
DOI : 10.1093/hmg/7.10.1649

URL : https://academic.oup.com/hmg/article-pdf/7/10/1649/1784596/7-10-1649.pdf

M. Jazurek, A. Ciesiolka, J. Starega-roslan, K. Bilinska, and W. J. Krzyzosiak, Identifying proteins that bind to specific RNAs -focus on simple repeat expansion diseases, Nucleic Acids Res, vol.44, pp.9050-9070, 2016.

E. Jaworska, E. Kozlowska, P. M. Switonski, and W. J. Krzyzosiak, Modeling simple repeat expansion diseases with iPSC technology, Cell. Mol. Life Sci, vol.73, pp.4085-4100, 2016.
DOI : 10.1007/s00018-016-2284-0

M. C. Costa, K. Luna-cancalon, S. Fischer, N. S. Ashraf, M. Ouyang et al., , 2013.

, Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease, Mol. Ther, vol.21, pp.1898-1908

T. Stiernagle, Maintenance of C. elegans, pp.1-11, 2006.

A. Berdichevsky, M. Viswanathan, H. R. Horvitz, and L. Guarente, C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span, Cell, vol.125, pp.1165-1177, 2006.