S. Parent, P. O. Newton, and D. R. Wenger, Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing, Instr Course Lect, vol.54, p.15948477, 2005.

M. Fadzan and J. Bettany-saltikov, Etiological Theories of Adolescent Idiopathic Scoliosis: Past and Present, Open Orthop J, vol.11, p.5759107, 2017.

R. G. Burwell, E. M. Clark, P. H. Dangerfield, and A. Moulton, Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin, Scoliosis Spinal Disord, vol.11, p.4888516, 2016.

A. D. Adamson, S. Friedrichsen, S. Semprini, C. V. Harper, J. J. Mullins et al., Human prolactin gene promoter regulation by estrogen: convergence with tumor necrosis factor-alpha signaling. Endocrinology, vol.149, p.18006630, 2008.

P. Central and P. , , p.2342177

S. A. Patten, P. Margaritte-jeannin, J. C. Bernard, A. E. Labalme, A. Besson et al., Functional variants of POC5 identified in patients with idiopathic scoliosis, J Clin Invest, vol.125, issue.3, p.4362221, 2015.

L. Xu, F. Sheng, C. Xia, Y. Li, Z. Feng et al., Common variant of POC5 is associated with the susceptibility of adolescent idiopathic scoliosis. Spine (Phila Pa, p.29189569, 1976.

J. Azimzadeh, P. Hergert, A. Delouvee, U. Euteneuer, E. Formstecher et al., hPOC5 is a centrin-binding protein required for assembly of full-length centrioles, J Cell Biol, vol.185, issue.1, p.2700515, 2009.

T. J. Dantas, O. M. Daly, P. C. Conroy, T. M. Wang, Y. Lalor et al., Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair, PLoS One, vol.8, issue.7, p.3699651, 2013.

C. W. Chang, W. B. Hsu, J. J. Tsai, C. J. Tang, and T. K. Tang, CEP295 interacts with microtubules and is required for centriole elongation, J Cell Sci, vol.129, issue.13, p.4958302, 2016.

M. Weisz-hubshman, S. Broekman, E. Van-wijk, F. Cremers, A. Abu-diab et al., Whole-exome sequencing reveals POC5 as a novel gene associated with autosomal recessive retinitis pigmentosa, Hum Mol Genet, 2017.

J. Pan, T. Seeger-nukpezah, and E. A. Golemis, The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies, Cell Mol Life Sci, vol.70, issue.11, p.3657316, 2013.

P. Satir, CILIA: before and after, Cilia, vol.6, p.5343305, 2017.

G. J. Pazour and G. B. Witman, The vertebrate primary cilium is a sensory organelle, Curr Opin Cell Biol, vol.15, issue.1, p.12517711, 2003.

H. M. Mitchison and E. M. Valente, Motile and non-motile cilia in human pathology: from function to phenotypes, J Pathol, vol.241, issue.2, p.27859258, 2017.

D. A. Braun, F. Hildebrandt, and . Ciliopathies, Cold Spring Harb Perspect Biol, vol.9, issue.3, p.5334254, 2017.

N. Powles-glover, Cilia and ciliopathies: classic examples linking phenotype and genotype-an overview, Reprod Toxicol, vol.48, p.24859270, 2014.

D. T. Grimes, C. W. Boswell, N. F. Morante, R. M. Henkelman, R. D. Burdine et al., Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature, Science, vol.352, issue.6291, p.27284198, 2016.

S. Werner, A. Pimenta-marques, and M. Bettencourt-dias, Maintaining centrosomes and cilia, J Cell Sci, vol.130, issue.22, p.29142065, 2017.

B. C. Searle, Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies, Proteomics, vol.10, issue.6, pp.1265-1274, 2010.
DOI : 10.1002/pmic.200900437

S. Gadadhar, H. Dadi, S. Bodakuntla, A. Schnitzler, I. Bieche et al., Tubulin glycylation controls primary cilia length, J Cell Biol, vol.216, issue.9, p.5584158, 2017.
DOI : 10.1083/jcb.201612050

URL : http://jcb.rupress.org/content/jcb/216/9/2701.full.pdf

E. Robbins, G. Jentzsch, and A. Micali, The centriole cycle in synchronized HeLa cells, J Cell Biol, vol.36, issue.2, p.2107360, 1968.
DOI : 10.1083/jcb.36.2.329

URL : http://jcb.rupress.org/content/36/2/329.full.pdf

L. Terra, S. English, C. N. Hergert, P. Mcewen, B. F. Sluder et al., The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation, J Cell Biol, vol.168, issue.5, p.2171814, 2005.

A. Knodler, S. Feng, J. Zhang, X. Zhang, A. Das et al., Coordination of Rab8 and Rab11 in primary ciliogenesis, Proc Natl Acad Sci, vol.107, issue.14, p.2851980, 2010.
DOI : 10.1073/pnas.1002401107

URL : http://www.pnas.org/content/107/14/6346.full.pdf

C. J. Westlake, L. M. Baye, M. V. Nachury, K. J. Wright, K. E. Ervin et al., Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome, Proc Natl Acad Sci U S A, vol.108, issue.7, p.3041065, 2011.

T. G. Drivas and J. Bennett, CEP290 and the primary cilium, Adv Exp Med Biol, vol.801, p.24664739, 2014.
DOI : 10.1007/978-1-4614-3209-8_66

R. A. Rachel, T. Li, and A. Swaroop, Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins, Cilia, vol.1, issue.1, p.3563624, 2012.
DOI : 10.1186/2046-2530-1-22

URL : https://ciliajournal.biomedcentral.com/track/pdf/10.1186/2046-2530-1-22

E. Acaroglu, I. Akel, A. Alanay, M. Yazici, and R. Marcucio, Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine (Phila Pa 1976), vol.34, pp.659-63, 2009.

S. B. Roberts and A. I. Tsirikos, Thoracolumbar kyphoscoliosis with unilateral subluxation of the spine and postoperative lumbar spondylolisthesis in Hunter syndrome, J Neurosurg Spine, vol.24, issue.3, p.26588497, 2016.

P. J. Wilson, C. P. Morris, D. S. Anson, T. Occhiodoro, J. Bielicki et al., Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA, Proc Natl Acad Sci U S A, vol.87, issue.21, p.54990, 1990.

J. J. Galligan and D. R. Petersen, The human protein disulfide isomerase gene family, Hum Genomics, vol.6, p.3500226, 2012.
DOI : 10.1186/1479-7364-6-6

URL : https://humgenomics.biomedcentral.com/track/pdf/10.1186/1479-7364-6-6

A. Kaplan, M. M. Gaschler, D. E. Dunn, R. Colligan, L. M. Brown et al., Small moleculeinduced oxidation of protein disulfide isomerase is neuroprotective, Proc Natl Acad Sci, vol.112, issue.17, p.4418888, 2015.
DOI : 10.1073/pnas.1500439112

URL : http://www.pnas.org/content/112/17/E2245.full.pdf

H. Nishi, K. Hashimoto, and A. R. Panchenko, Phosphorylation in protein-protein binding: effect on stability and function, Structure, vol.19, issue.12, p.22153503, 2011.
DOI : 10.1016/j.str.2011.09.021

URL : https://doi.org/10.1016/j.str.2011.09.021

P. Central and P. , , p.3240861

S. Yoshiba and H. Hamada, Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry, Trends Genet, vol.30, issue.1, p.24091059, 2014.

K. Shinohara and H. Hamada, Cilia in Left-Right Symmetry Breaking, Cold Spring Harb Perspect Biol, vol.9, issue.10, p.28213464, 2017.
DOI : 10.1101/cshperspect.a028282

URL : http://cshperspectives.cshlp.org/content/9/10/a028282.full.pdf

B. K. Huang and M. A. Choma, Microscale imaging of cilia-driven fluid flow, Cell Mol Life Sci, vol.72, issue.6, p.4605231, 2015.
DOI : 10.1007/s00018-014-1784-z

URL : http://europepmc.org/articles/pmc4605231?pdf=render

Y. Uetake, J. Loncarek, J. J. Nordberg, C. N. English, L. Terra et al., Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells, J Cell Biol, vol.176, issue.2, p.2063937, 2007.
DOI : 10.1083/jcb.200607073

URL : http://jcb.rupress.org/content/176/2/173.full.pdf